

Computer Science Department

Technical Report
NWU-CS-05-06
April 14, 2005

VSched: Mixing Batch And Interactive Virtual Machines

Using Periodic Real-time Scheduling

Bin Lin, Peter A. Dinda

Abstract

We are developing Virtuoso, a system for distributed computing using virtual machines
(VMs). Virtuoso must be able to mix batch and interactive VMs on the same physical
hardware, while satisfying constraints on responsiveness and compute rates for each
workload. VSched is the component of Virtuoso that provides this capability. VSched is
an entirely user-level tool that interacts with the stock Linux kernel running below any
type-II virtual machine monitor to schedule all VMs (indeed, any process) using a
periodic real-time scheduling model. This abstraction allows compute rate and
responsiveness constraints to be straightforwardly described using a period and a slice
within the period, and it allows for fast and simple admission control. This paper makes
the case for periodic real-time scheduling for VM-based computing environments, and
then describes and evaluates VSched. It also applies VSched to scheduling parallel
workloads, showing that it can help a BSP application maintain a fixed stable
performance despite externally caused load imbalance.

Effort sponsored by the National Science Foundation under Grants ANI-0093221, ACI-
0112891, ANI-0301108, EIA-0130869, and EIA-0224449, and aided by support from
VMware and Dell. Any opinions, findings and conclusions or recommendations
expressed in this material are those of the author and do not necessarily reflect the
views of the National Science Foundation (NSF), VMware, or Dell.

Keywords: real-time scheduling, interactive workloads, batch workloads, parallel
workloads, grid computing, virtual machines, resource management

VSched: Mixing Batch And Interactive Virtual Machines
Using Periodic Real-time Scheduling

Bin Lin Peter A. Dinda
{binlin, pdinda}@cs.northwestern.edu

Department of Computer Science, Northwestern University

Abstract

We are developing Virtuoso, a system for distributed
computing using virtual machines (VMs). Virtuoso must
be able to mix batch and interactive VMs on the same
physical hardware, while satisfying constraints on re-
sponsiveness and compute rates for each workload.
VSched is the component of Virtuoso that provides this
capability. VSched is an entirely user-level tool that in-
teracts with the stock Linux kernel running below any
type-II virtual machine monitor to schedule all VMs (in-
deed, any process) using a periodic real-time schedul-
ing model. This abstraction allows compute rate and
responsiveness constraints to be straightforwardly de-
scribed using a period and a slice within the period, and
it allows for fast and simple admission control. This pa-
per makes the case for periodic real-time scheduling for
VM-based computing environments, and then describes
and evaluates VSched. It also applies VSched to schedul-
ing parallel workloads, showing that it can help a BSP
application maintain a fixed stable performance despite
externally caused load imbalance.

1 Introduction

We are developing Virtuoso, a middleware for virtual
machine distributed computing that very closely emu-
lates the process of buying, configuring, and using an
Intel-based computer or collection of computers from a
web site, a process with which many users and certainly
all system administrators are familiar. Instead of a phys-
ical computer, the user receives a reference to the vir-
tual machine which he can then use to start, stop, reset,
and clone the machine. The system presents the illusion
that the virtual machine is right next to the user in terms
of console display, devices, and the network. Virtuoso
currently uses VMWare GSX Server, a type-II virtual
machine [16], as its virtual machine monitor (VMM),
though other VMMs can in principle be substituted. De-

tails about the Virtuoso implementation [36], its virtual
networking system [38], its application topology infer-
ence system [17] and its dynamic adaptation system [39]
can be found in the references, as can a detailed case for
grid computing on virtual machines [12].

Virtuoso is designed to support a wide range of work-
loads that its simple user-level abstraction makes possi-
ble. Three workload types that drove our design process
are:

• Interactive workloads which occur when using a
remote VM to substitute for a desktop computer.
These workloads include desktop applications, web
applications and games.

• Batch workloads, such as scientific simulations or
analysis codes. These workloads are commonplace
in grid computing [13].

• Batch parallel workloads, such as scientific simula-
tions or analysis codes that can be scaled by adding
more VMs. These are also commonplace in grid
computing. Typically, it is desirable for such work-
loads to be gang scheduled [25].

Today, both sequential and parallel batch jobs are often
scheduled using advance reservations [24, 37] such that
they will finish by some deadline. Resource providers in
Virtuoso price VM execution according to interactivity
and compute rate constraints; thus, its scheduling model
must be able to validate and enforce these constraints.

An important challenge in Virtuoso is how to sched-
ule a workload-diverse set of VMs on a single physical
machine so that interactivity does not suffer and batch
machines meet both their advance reservation deadlines
and gang scheduling constraints. It is that challenge that
VSched addresses. VSched provides a unified periodic
real-time scheduling model that can address the various
constraints of different kinds of VMs. VSched is an en-
tirely user-level Linux tool that is remotely controlled by
Virtuoso. Its main requirements are a 2.4 or 2.6 Linux
kernel and root privileges, in addition it can make use of

1

the KURT high resolution timer [20] to permit very fine
grain schedules. It can work with any type-II VMM that
runs the VM as a Linux process.

VSched is publicly released and can be downloaded
from http://virtuoso.cs.northwestern.edu.

2 VSched

VSched schedules a collection of VMs on a host ac-
cording to the model of independent periodic real-time
tasks. Tasks can be introduced or removed from con-
trol at any point in time through a client/server interface.
Virtuoso uses this interface to enforce compute rate and
interactivity commitments a provider has made to a VM.

2.1 Abstraction

The periodic real-time model is a unifying abstrac-
tion that can provide for the needs of the various classes
of applications described above. In the periodic real-
time model, a task is run for slice seconds every period
seconds. Typically, the periods start at time zero. Us-
ing earliest deadline first (EDF) schedulability analy-
sis [29], the scheduler can determine whether some set
of (period , slice) constraints can be met. The scheduler
then simply uses dynamic priority preemptive scheduling
with the deadlines of the admitted tasks as priorities.

VSched offers soft real-time guarantees. Because the
Linux kernel does not have priority inheritance mecha-
nisms, nor known bounded interrupt service times, it is
impossible for a tool like VSched to provide hard real-
time guarantees to ordinary processes. Nonetheless, as
we show in our evaluation, for a wide range of periods
and slices, and under even fairly high utilization, VSched
almost always meets the deadlines of its tasks.

In typical soft and hard embedded real-time systems,
the (period , slice) constraint of a task is usually mea-
sured in the microseconds to low milliseconds. VSched
is unusual in that it supports periods and slices ranging
into days. While fine, millisecond and sub-millisecond
ranges are needed for highly interactive VMs, much
coarser resolutions are appropriate for batch VMs.

It is important to realize that the ratio slice/period
defines the compute rate of the task.

Batch VMs Executing a VM under the constraint
(period , slice) for T seconds gives us at least slice ×
�T/period� seconds of CPU time within T seconds. In
this way, the periodic real-time model can be used to ex-
press a deadline for the entire execution of the batch VM.

Batch parallel VMs A parallel application may be run
in a collection of VMs, each of which is scheduled with

the same (period , slice) constraint. If each VM is given
the same schedule and starting point, then they can run
in lock step, avoiding the synchronization costs of typical
gang scheduling. If the constraint accurrately reflects the
application’s compute/communicate balance, then there
should be minimal undesired performance impact as we
control the execution rate. Because the schedule is a
reservation, the application should be impervious to ex-
ternal load.

Interactive VMs Based on an in-depth study of users
operating interactive applications such as word proces-
sors, presentation graphics, web browsers, and first-
person shooter games, we have reached a number of con-
clusions about how to keep users of such applications
happy [18]. The points salient to this paper are that the
CPU rates and jitter needed to keep the user happy is
highly dependent on the application and on the user. We
believe we need to incorporate direct user feedback in
scheduling interactive applications running in VMs.

In earlier work [27], we explored using a single
“irritation button” feedback mechanism to control VM
priority. This approach proved to be too course-
grained. The two-dimensional control possible with the
(period , slice) mechanism is much finer-grained. An im-
portant design criterium for VSched is that a VM’s con-
straints can be changed very quickly (in milliseconds)
so that an interactive user can improve his VM’s perfor-
mance immediately or have the system migrate it to an-
other physical machine if his desired (period , slice) is
impossible on the original machine.

2.2 Related work

Existing approaches to scheduling VMs running un-
der a type-II VMM on Linux (and other Unixes) are
insufficient to meet the needs of the workloads listed
above. By default, these VMs are scheduled as ordi-
nary dynamic-priority processes with no timing or com-
pute rate constraints at all. VMWare ESX server [40]
and virtual server systems such as Ensim [11] improve
this situation by providing compute rate constraints us-
ing weighted fair queuing [4] and lottery scheduling [41].
However, these are insufficient for our purposes because
they either provide no timing constraints or do not allow
for the timing constraints to be smoothly varied. Funda-
mentally, they are rate-based. For example, an interac-
tive VM in which a word processing application is be-
ing used may only need 5% of the CPU, but it will need
to be run at least every 50 ms or so. Similarly, a VM
that is running a parallel application may need 50% of
the CPU, and be scheduled together with its companion
VMs. The closest VM-specific scheduling approach to

2

ours is the VServer [28] slice scheduling in the Planet-
Lab testbed [34]. However, these slices are created a pri-
ori and fixed. VSched provides dynamic scheduling.

Periodic real-time scheduling systems for general-
purpose operating systems have been developed before.
Most relevant to our work is Polze’s scheduler [33],
which created soft periodic schedules for multimedia ap-
plications by manipulating priorities under Windows NT.
DSRT [6], SMART [32], and Rialto [26] had similar ob-
jectives. In contrast, VSched is a Linux tool, provides
remote control for systems like Virtuoso, and focuses on
scheduling VMs. Linux SRT, defunct since the 2.2 ker-
nel, was a set of kernel extensions to support soft real-
time scheduling for multimedia applications under Linux
[23]. The RBED system [35] also provides real-time
scheduling for general Linux processes through kernel
modifications. The Xen [9] virtual machine monitor uses
BVT [10] scheduling with a non-trivial modification of
Linux kernel. In contrast to these systems, VSched can
operate entirely at user-level.

There have been several hard real-time extensions
to Linux. The best known of these are Real-time
Linux [42], RTAI [8], and KURT [20]. We examined
these tools (and Linux SRT as well) before deciding to
develop VSched. For our purposes the hard real-time ex-
tensions are inappropriate because real-time tasks must
be written specifically for them. In the case of Real-time
Linux, the tasks are even required to be kernel modules.
We can optionally use KURT’s UTIME high resolution
timers to achieve very fine grain scheduling of VMs in
VSched.

3 System design

VSched uses the schedulability test of the earliest-
deadline-first (EDF) algorithm [29, 30] to do ad-
mission control and EDF scheduling to meet dead-
lines. It is a user-level program that uses fixed priori-
ties within Linux’s SCHED FIFO scheduling class and
SIGSTOP/SIGCONT to control other processes, leaving
aside some percentage of CPU time for processes that it
does not control. The resolution at which it can schedule
depends on timer resolution in the system, and thus its
resolution depends on the Linux kernel version and the
existence of add-on high-resolution timers. VSched con-
sists of a parent and a child process that communicate
via a shared memory segment and a pipe. The following
describes the design of VSched in detail.

3.1 Algorithms

A well-known dynamic-priority algorithm is EDF
(Earliest Deadline First). It is a preemptive policy in

which tasks are prioritized in reverse order of the im-
pending deadlines. We assume that the deadlines of our
tasks occur at the ends of their periods, although this is
not required by EDF.

Given a system of n independent periodic tasks, there
is a fast algorithm to determine if the tasks, if scheduled
using EDF, will all meet their deadlines:

U(n) =
n∑

k=1

slicek

periodk

≤ 1 (1)

Here, U(n) is the total utilization of the task set being
tested. Equation 1 is both a necessary and sufficient
condition for any system of n independent, preemptable
tasks that have relative deadlines equal to their respective
periods to be schedulable by EDF [30].

3.2 Mechanisms

SCHED FIFO Three scheduling policies are sup-
ported in the current Linux kernel: SCHED FIFO,
SCHED RR and SCHED OTHER. SCHED OTHER is
the default universal time-sharing scheduler policy used
by most processes. It is a preemptive, dynamic-priority
scheduler. SCHED FIFO and SCHED RR are intended
for special time-critical applications that need more pre-
cise control over the way in which runnable processes
are selected for execution. Within each policy, different
priorities can be assigned, with SCHED FIFO priorities
being strictly higher than SCHED RR priorities which
are in turn strictly higher than SCHED OTHER priori-
ties. SCHED FIFO priority 99 is the highest priority in
the system and it is the priority at which the scheduling
core of VSched runs. The server front-end of VSched
runs at priority 98. No other processes at these priority
levels are allowed.

SCHED FIFO is a simple preemptive scheduling pol-
icy without time slicing. For each priority level in
SCHED FIFO, the kernel maintains a FIFO queue of
processes. The first runnable process in the highest pri-
ority queue with any runnable processes runs until it
blocks, at which point it is placed at the back of its
queue. When VSched schedules a VM to run, it sets it to
SCHED FIFO and assigns it a priority of 97, just below
that the VSched server front-end. No other processes at
this priority level are allowed.

The following rules are applied by the kernel: A
SCHED FIFO process that has been preempted by an-
other process of higher priority will stay at the head
of the list for its priority and will resume execution
as soon as all processes of higher priority are blocked
again. When a SCHED FIFO process becomes runnable,
it will be inserted at the end of the list for its pri-
ority. A system call to sched_setscheduler or

3

sched_setparam will put the SCHED FIFO process
at the end of the list if it is runnable. No other events will
move a process scheduled under the SCHED FIFO pol-
icy in the queue of runnable processes with equal static
priority. A SCHED FIFO process runs until either it is
blocked by an I/O request, it is preempted by a higher
priority process, or it calls sched_yield. The upshot
is that the process that VSched has selected to run is the
one with the earliest deadline. It will run whenever it is
ready until VSched becomes runnable.

Timers After configuring a process to run at
SCHED FIFO priority 97, the VSched core waits
(blocked) for one of two events using the select
system call. It continues when it is time to change
the currently running process (or to run no process) or
when the set of tasks has been changed via the server
front-end.

The resolution that VSched can achieve is critically
dependent on the available timer. Under the standard
2.4.x Linux kernel, the timer offers 10 ms resolution. For
many applications this is sufficient. However, especially
interactive applications, such as games or low-latency
audio playback require finer resolution. When running
on a 2.6.x Linux kernel, VSched achieves 1 ms resolution
because the timer interrupt rate has been raised to 1000
Hz. The UTIME component of KURT-Linux [20] uses
the motherboard timers to deliver asynchronous timer in-
terrupts with resolution in the tens of µs. In VSched, we
call select with a non-null timeout as a portable way
to sleep with whatever precision is offered in the under-
lying kernel. Since UTIME extends select’s precision
when it’s installed, VSched can offer sub-millisecond
resolution in these environments. Note, however, that the
overhead of VSched is considerably higher than UTIME,
so the resolution is in the 100s of µs.

SIGSTOP/SIGCONT By using EDF scheduling to
determine which process to raise to highest priority, we
can assure that all admitted processes meet their dead-
lines. However, it is possible for a process to consume
more than its slice of CPU time. VSched can optionally
limit a VM to exactly the slice that it requested by using
the SIGSTOP and SIGCONT signals to suspend and re-
sume the VM. Although this adds overhead, we envision
this as critical in a commercial environment.

3.3 Structure

VSched consists of a server and a client, as shown in
Figure 1. The VSched server is a daemon running on
Linux that spawns the scheduling core, which executes
the scheduling scheme described above. The VSched

TCP

Scheduling
Core

SCHED_FIFO
Queues

Shared
Memory

PIPE
Server
module

Admission
Control

API
Calls

Linux kernel

SSL

VSCHED Client

VIRTUOSO Front-end

VSCHED
Server

98

97

99

SCHED_FIFO Priority

Figure 1. Structure of VSched.

VM1 VM1 VM1

VM2

VM3 VM3 VM3

VM2

0

0

0

50

50

50

100

100

100

150

150

150

120

120130

130

70

70

20

20 30

30

VM1(50, 20) VM2(100, 10) VM3(1000, 300)

(period, slice) Unit: millisecond

VM1 arrives

VM2 arrives

VM3 arrives Time(millisecond)

Figure 2. A detailed VSched schedule for
three VMs.

client communicates with the server over a TCP con-
nection that is encrypted using SSL. Authentication is
accomplished by a password exchange. The server com-
municates with the scheduling core through two mecha-
nisms. First, they share a memory segment which con-
tains an array that describes the current tasks to be sched-
uled as well as their constraints. Access to the array is
guarded via a semaphore. The second mechanism is a
pipe from server to core. The server writes on the pipe to
notify the core that the schedule has been changed.

Client interface Using the VSched client, a user can
connect to VSched server and request that any process
be executed according to a period and slice. Virtuoso
keeps track of the pids used by its VMs. For example,
the specification (3333, 1000 ms, 200 ms) would mean
that process 3333 should be run for 200 ms every 3000
ms. In response to such a request, the VSched server

4

Machine 1: Pentium 4, 2.00GHz, 512MB Mem, Linux version 2.4.20-31.9 (Red Hat Linux 9.0)
Machine 2: Dual CPUs (Pentium III Coppermine, 1.0 GHZ), 1G Mem, non-SMP Linux kernel 2.4.18 patched with KURT 2.4.18-2
Machine 3: Pentium 4, 2.00GHz, 512MB Mem, Linux version 2.6.8.1 (Red Hat Linux 9.0)

Figure 3. Testbed Machines

Kernel version Machine Utilization Period Slice Deadlines per
(from Figure 3) Range Range Range combination

Linux kernel 2.4.20-31.9 1 10% - 99% 1016 ms - 16 ms 105.8 ms - 1.6 ms 1000
(increasing by 10%) (decreasing by 40)

KURT 2.4.18-2 2 1% - 99% 10.1 ms - 1.1 ms 9.999 ms - 0.011 ms 2000
(increasing by 1%) (decreasing by 1)

Linux kernel 2.6.8.1 3 1% - 99% 101 ms - 1 ms 99.99 ms - 0.01 ms 2000
(increasing by 1%) (decreasing by 10)

Figure 4. Evaluation scenarios.

determines whether the request is feasible. If it is, it will
add the process to the array and inform the scheduling
core. In either case, it replies to the client.

VSched allows a remote client to find processes,
pause or resume them, specify or modify their real-time
schedules, and return them to ordinary scheduling. Any
process, not just VMs, can be controlled in this way.

Admission control VSched’s admission control algo-
rithm is based on Equation 1, the admissibility test of
the EDF algorithm. As we mentioned above, it is both
a necessary and sufficient condition. Instead of trying to
maximize the total utilization, we allow the system ad-
ministrator to reserve a certain percentage of CPU time
for SCHED OTHER processes. The percentage can be
set by the system administrator when starting the VSched
daemon.

Scheduling core The scheduling core is a modified
EDF scheduler that dispatches processes in EDF order
but interrupts them when they have exhausted their allo-
cated CPU for the current period. If configured by the
system administrator, VSched will stop the processes at
this point, resuming them when their next period begins.

Since a task can miss its deadline only at a period
boundary, the scheduling core makes scheduling deci-
sions only at period boundaries, i.e., at the points when
a task exhausts its slice for the current period, or when
the server indicates that the task set and its constraints
have changed. In this way, unlike a kernel-level sched-
uler [1, 2, 3, 5, 19, 31], VSched is typically invoked only
at the rate of the task with the smallest period.

When the scheduling core receives scheduling re-
quests from the server module, it will interrupt the cur-
rent task and make an immediate scheduling decision
based on the new task set. The scheduling request can

be a request for scheduling a newly arrived task or for
changing a task that has been previously admitted.

Figure 2 illustrates the scheduling of three virtual ma-
chines with different arrival times.

4 Evaluation

Our evaluation focuses on the resolution and utiliza-
tion limits of VSched running on several different plat-
forms. We attempt to answer the following questions:
what combinations of period and slice lead to low dead-
line miss rates and what happens when the limits are ex-
ceeded?

We ran our evaluation for three different environ-
ments, as shown in Figure 3. The key differences be-
tween these environments are the processor speed (1
GHz P3 versus 2 GHz P4) and the available timers (2.4
kernel, 2.4 with KURT, and 2.6 kernel). For space rea-
sons, we present results for machine 1 only, a stock Red
Hat installation that is the most conservative of the three.
The final paper will show complete results.

4.1 Methodology

Our primary metric is the miss rate, the number of
times we miss the deadlines of a task divided by the total
number of deadlines. For tasks that miss their deadlines,
we also collect the miss time, the time by which the dead-
line was overrun. We want to understand how the miss
rate varies with period and slice (or, equivalently, period
and utilization), the number of VMs, and by how much
we typically miss a deadline when this happens.

We evaluate first using randomly generated testcases,
a testcase being a random number of VMs, each with a
different (period , slice) constraint. Next, we do a care-
ful deterministic sweep over period and slice for a single

5

 0
 0.01
 0.02
 0.03
 0.04
 0.05
 0.06
 0.07
 0.08
 0.09
 0.1

 0.11
 0.12

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

M
i
s
s

r
a
t
e

Utilization

1 VM

 0
 0.01
 0.02
 0.03
 0.04
 0.05
 0.06
 0.07
 0.08
 0.09
 0.1

 0.11
 0.12

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

M
i
s
s

r
a
t
e

Utilization

2 VMs

 0
 0.01
 0.02
 0.03
 0.04
 0.05
 0.06
 0.07
 0.08
 0.09
 0.1

 0.11
 0.12

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

M
i
s
s

r
a
t
e

Utilization

3 VMs

 0
 0.01
 0.02
 0.03
 0.04
 0.05
 0.06
 0.07
 0.08
 0.09
 0.1

 0.11
 0.12

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

M
i
s
s

r
a
t
e

Utilization

4 VMs

Figure 5. Miss rate as a function of utiliza-
tion, Random study on Machine 1 (2 GHz
P4, 2.4 kernel).

VM. In both cases, Figure 4 shows the range of parame-
ters.

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

F
r
e
q
u
e
n
c
y

Missed percentage of slice

1 VM

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

F
r
e
q
u
e
n
c
y

Missed percentage of slice

2 VMs

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

F
r
e
q
u
e
n
c
y

Missed percentage of slice

3 VMs

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

F
r
e
q
u
e
n
c
y

Missed percentage of slice

4 VMs

Figure 6. Distribution of missed percent-
age of slice, Random study on Machine 1
(2 GHz P4, 2.4 kernel).

4.2 Randomized study

Figure 5 shows the miss rates as a function of the total
utilization of the VMs for one through four VMs. Each
point corresponds to a single randomly generated test-

6

 200
 400

 600
 800

 1000 0
 200

 400
 600

 800
 1000

 0

 0.2

 0.4

 0.6

 0.8

 1

Miss Rate

Linux kernel 2.4: (Period, Slice, Miss Rate) Unit: millisecond

Period

Slice

Miss Rate

(a) 3D

 0

 200

 400

 600

 800

 1000

 200 400 600 800 1000

S
l
i
c
e

Period

Linux kernel 2.4: (Period, Slice, Miss Rate) (Contour) Unit: millisecond

(b) Contour

Figure 7. Miss rate as a function of period
and slice for Machine 1 (2 GHz P4, 2.4 ker-
nel).

case. The miss rates are low, indendent of total utiliza-
tion, and largely independent of the number of VMs after
two VMs. Going from one to two VMs introduces the
need for more frequent context switches.

Figure 6 shows the distribution of the ratio of miss
time to slice size. All misses that do occur miss by less
than 9%.

4.3 Deterministic study

In this study, we scheduled a single VM, sweeping
its period and slice over the values described in Figure 4.
Our goal was to determine the maximum possible utiliza-
tion and resolution, and thus the safe region of operation
for VSched on the different platforms.

Figure 7 shows the miss rate as a function of the pe-
riod and slice for Machine 1. The top graph is a 3D rep-
resentation of this function, while the bottom graph is
a contour map of the function. Clearly, utilizations to

(Period:16, Slice:15.8), Unit: millisecond

0

0.02

0.04

0.06

0.08

0.1

0.12

0.
00

02
2

0.
00

37
3

0.
00

38
9

0.
00

39
5

0.
00

39
7

0.
00

39
7

0.
00

39
8

0.
00

39
9

0.
00

40
0

0.
00

40
0

0.
00

40
1

0.
00

40
2

0.
00

40
2

0.
00

40
3

0.
00

40
4

0.
00

40
5

0.
00

40
7

0.
00

42
2

0.
00

44
1

0.
01

13
6

Miss Time (millisecond)

F
re

q
u

en
cy

Figure 8. Distribution of miss times when
utilization is exceeded for Machine 1 (2 GHz
P4, 2.4 kernel).

Configuration Maximum Utilization Minimum Resolution
Machine 1 0.90 10 ms
Machine 2 0.75 0.2 ms
Machine 3 0.98 1 ms

Figure 9. Summary of performance limits
on three platforms.

within a few percent of 100% are possible with nearly
0% miss rate.

Deadline misses tend to occur in one of two situations:

• Utilization misses: The utilization needed is too
high (but less than 1).

• Resolution misses: The period or slice is too small
for the available timer and VSched overhead to sup-
port.

Figure 8 illustrates utilization misses on Machine 1.
Here, we are requesting a period of 16 ms (feasible) and
a slice of 15.8 ms (feasible). However, this utilization of
98.75% is too high for to be able to schedule it VSched
would require slightly more than 1.25% of the CPU. The
figure shows a histogram of the miss times. Notice that
the vast majority of misses miss by less than 405 µs, less
than 3% of the period.

Figure 9 summarizes the utilization and resolution
limits of VSched running on our different configurations.
Beyond these limits, miss rates are close to 100%, while
within these limits, miss rates are close to 0%.

7

5 Mixing batch and interactive VMs

To see the effect of VSched on an interactive VM
used by a real user, one of the authors ran an interactive
VM with fine-grain interactive programs together with a
batch VM and reported his observations. The test ma-
chine had the following configuration:

• Pentium 4, 2.20GHz, 512MB Mem, Linux version
2.6.3-7mdk (Mandrake Linux 10.0)

• VMware GSX Server 3.1

• VSched server running as a daemon

• Interactive Windows XP Professional VM

• Batch VM running Red Hat Linux 7.3. A process
was started in the batch VM that consumed CPU cy-
cles as fast as possible and periodically sent a UDP
packet to an external machine to report on progress.

The author tried the following activities in the interactive
VM:

• Listening to MP3 music using Microsoft Media
Player

• Watching MPEG video clip using Microsoft Media
Player

• Playing DOOM [21] and QUAKE II [22] (3D first
person shooter games)

• Browsing the web using Internet Explorer, using
multiple windows, Flash Player content, saving
pages, and performing fine-grain view scrolling.

We set the batch VM to run 1 minute every 10 minutes
(10% utilization). The user was given control of the pe-
riod and slice of his interactive VM. For each activity, he
tried different combinations of period and slice to deter-
mine qualitatively which were the minimum acceptable
combinations. Figure 10 summarizes his observations.

The final paper will discuss these results in detail.
These qualitative results are very promising. They

suggest that by using VSched we can run a mix of in-
teractive and batch VMs together on the same machine
without having them interfere. The results also indicate
that there is considerable headroom for the interactive
VMs. For example, we could multiplex nearly 9 Win-
dows VMs with users comfortably playing QUAKE II in
each of them on one low-end P4 computer. Given the fast
reaction time of VSched to a schedule change (typically
within a few milliseconds), we have high hopes that the
end-users of interactive machines will be able to dynam-
ically adjust their VM’s constraints for changing needs.

Figure 11. Compute rate as a function of
utilization

The same holds true for the users of batch VMs. Indeed,
the VSched abstraction provides for a continuum from
fine grain interactivity to very course grain batch opera-
tion, all on the same hardware.

6 Scheduling batch parallel applications

Can we use the periodic real-time model of VSched
to (a) linearly control the execution rate of a parallel ap-
plication running on VMs mapped to different hosts; and
(b) protect such an application from external load. Re-
call that parallel applications are typically run on either a
space-shared machine or using gang-scheduling in order
to avoid performance-destroying interactions.

To provide initial answers to these questions, we run a
synthetic Bulk Synchronous Parallel (BSP [15]) bench-
mark, patterns, written for PVM [14]. Patterns is con-
figured to run all-to-all communication pattern on four
nodes of a cluster (2.0 GHz Xeon, 1.5 GB RAM, Gigabit
Ethernet interconnect). The compute/communicate ratio
is set to 0.5. We schedule the program on each of the
nodes using VSched. We use the execution rate of the
program in MFLOP/s as our metric.

6.1 Controlling execution rate

The goal of this experiment was to determine if, for
a desired utilization, there is a (period , slice) constraint
that achieves the utilization while resulting in only a cor-
responding decrease in actual execution rate. We used
periods of 20, 30, ..., 100 ms and slices of 0.1, 0.2, ...,
0.9 times the period.

Figure 11 shows the relationship between MFLOP/s
and utilization (slice/period). As is marked on the

8

(period, slice)(ms) Quake(with sound) MP3 playback MPEG(with sound) playback Web Browsing
5, 1 good good good good
6, 1 good good good good
7, 1 good good ok(can’t tell) good
8, 1 ok(can’t tell) good tiny video jitter good
9, 1 small jitter good very small video jitter good
10, 1 very small jitter ok(can’t tell) small video jitter, sound jitter good
15, 1 jitter noisy video jitter, sound jitter good
20, 1 jitter noisy video jitter, sound jitter good
30, 1 jitter noisy video jitter, sound jitter jitter
20, 10 good good good good
30, 10 video ok, sound jitter noisy video jitter, sound jitter good
30, 15 good noisy video ok(can’t tell), sound jitter good
50, 10 jitter noisy video jitter, sound jitter small jitter
100, 80 ok(can’t tell) good good good
200, 100 much jitter very noisy much jitter jitter
300, 100 much jitter very noisy much jitter jitter

Figure 10. Summary of qualitative observations from running various interactive applications
in an Windows VM with varying period and slice. The machine is also running a batch VM
simultaneously with a (10 min, 1 min) constraint.

without VSched V.S. with VSched (30ms, 15ms)

0

5

10

15

20

25

30

35

40

45

50

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

Contention

M
FL

O
P

/s

w ithout VSched

w ith VSched

Figure 12. Compute rate as a function of
contention

graph, there are choices of (period , slice) that allow us
to change utilization while keeping the actual program
execution rate rigidly tied to it. As we decrease utiliza-
tion, the duration of a compute phases increases, but the
communication phase stays largely the same.

6.2 Ignoring external load

Any coupled parallel program can suffer drastically
from external load on any node; the program runs at the
speed of the slowest node. The periodic real-time model

of VSched can shield the program from such external
load, preventing the slowdown.

Here we execute patterns on four nodes with a
(period , slice) that results in it running at about 50% of
its maximum possible rate. On one of the nodes, we ap-
ply external load, a program that contends for the CPU
using load trace playback techniques [7]. Contention is
defined as the average number of contention processes
that are runnable. With a contention level of 1.5, if there
is one other runnable process, one not scheduled with
VSched, it runs at 1/(1.5 + 1) = 40 % of the maximum
possible rate on the system.

Figure 12 illustrates the results. With VSched, pat-
terns executes at about 25 MFLOP/s regardless of the
amount of contention introduced. On the other hand,
without VSched, the node with the contending program
slows as more contention is introduced, slowing down
all the other nodes as well. Beyond a contention of 1.0,
patterns slows to a crawl without VSched, and we do not
plot those points.

We conclude that VSched can help a BSP applica-
tion maintain a fixed stable performance under a speci-
fied compute rate constraint despite external load.

7 Conclusions and future work

We have motivated the use of the periodic real-time
model for virtual-machine-based distributed computing;
the model allows us to straightforwardly mix batch and
interactive VMs and allows users to succinctly describe
their performance demands. We have designed and im-

9

plemented a user-level scheduler for Linux that provides
this model. We evaluated its performance on several dif-
ferent platforms and found that we can achieve very low
deadline miss rates up to quite high utilizations and quite
fine resolutions. Our scheduler has allowed us to mix
long-running batch computations with fine grain interac-
tive applications such as first-person-shooter games with
no reduction in usability of the interactive applications.
It also lets us schedule parallel applications, effectively
controlling their utilization without adverse performance
effects, and allowing us to shield them from external
load.

We are now working on how to choose (period , slice)
constraints for different kinds of VMs, particularly inter-
active VMs in which users may have varying demands.
We envision a graphical tool for such VMs that indicates
to the user what his current efficiency (cycles used as op-
posed to cycles allocated) and cost is, and then allows
him to directly manipulate period and slice. If the period
and slice are not feasible on the current machine, a VM
migration will be initiated.

VSched is publicly released and can be downloaded
from http://virtuoso.cs.northwestern.edu.

References

[1] ANDERSON, J., AND SRINIVASAN, A. Pfair scheduling:
Beyond periodic task systems. In Proceedings of the 7th
International Conference on Real-Time Computing Sys-
tems and Applications (2000).

[2] BARUAH, S. K., COHEN, N. K., PLAXTON, C. G.,
AND VARVEL, D. A. Proportionate progress: a notion
of fairness in resource allocation. In Proceedings of the
twenty-fifth annual ACM symposium on Theory of com-
puting (1993), ACM Press, pp. 345–354.

[3] BARUAH, S. K., GEHRKE, J., AND PLAXTON, C. G.
Fast scheduling of periodic tasks on multiple resources.
In Proceedings of the 9th International Symposium on
Parallel Processing (1995), IEEE Computer Society,
pp. 280–288.

[4] BENNETT, J., AND ZHANG, H. Worst-case fair weighted
fair queueing. In Proceedings of IEEE INFOCOM 1996
(March 1996), pp. 120–127.

[5] CHANDRA, A., ADLER, M., AND SHENOY, P. Dead-
line fair scheduling: Bridging the theory and practice of
proportionate-fair scheduling in multiprocessor servers.
In Proceedings of the 7th IEEE Real-Time Technology
and Applications Symposium (RTSA) (June 2001).

[6] CHU, H.-H., AND NARHSTEDT, K. Cpu service classes
for multimedia applications. In Proceedings of the IEEE
International Conference on Multimedia Computing and
Systems (June 1999).

[7] DINDA, P. A., AND O’HALLARON, D. R. Realistic CPU
workloads through host load trace playback. In Proc. of

5th Workshop on Languages, Compilers, and Run-time
Systems for Scalable Computers (LCR2000) (May 2000).

[8] DOZIO, L., AND MANTEGAZZA, P. Real-time dis-
tributed control systems using rtai. In Proceedings of the
Sixth IEEE International Symposium on Object-Oriented
Real-Time Distributed Computing (2003).

[9] DRAGOVIC, B., FRASER, K., HAND, S., HARRIS, T.,
HO, A., PRATT, I., WARFIELD, A., BARHAM, P., AND

NEUGEBAUER, R. Xen and the art of virtualization,
2003.

[10] DUDA, K. J., AND CHERITON, D. R. Borrowed-virtual-
time (bvt) scheduling: supporting latency-sensitive
threads in a general-purpose scheduler. In SOSP ’99: Pro-
ceedings of the seventeenth ACM symposium on Operat-
ing systems principles (1999), ACM Press, pp. 261–276.

[11] ENSIM CORPORATION. http://www.ensim.com.

[12] FIGUEIREDO, R., DINDA, P. A., AND FORTES, J. A
case for grid computing on virtual machines. In Proceed-
ings of the 23rd International Conference on Distributed
Computing Systems (ICDCS 2003) (May 2003).

[13] FOSTER, I., AND KESSELMAN, C., Eds. The Grid:
Blueprint for a New Computing Infrastructure. Morgan
Kaufmann, 1999.

[14] GEIST, A., BEGUELIN, A., DONGARRA, J., JIANG, W.,
MANCHECK, R., AND SUNDERAM, V. PVM: Parallel
Virtual Machine. MIT Press, Cambridge, Massachusetts,
1994.

[15] GERBESSIOTIS, A. V., AND VALIANT, L. G. Direct
bulk-synchronous parallel algorithms. Journal of Parallel
and Distributed Computing 22, 2 (1994), 251–267.

[16] GOLDBERG, R. Survey of virtual machine research.
IEEE Computer (June 1974), 34–45.

[17] GUPTA, A., AND DINDA, P. A. Inferring the topology
and traffic load of parallel programs running in a virtual
machine environment. In Proceedings of the 10th Work-
shop on Job Scheduling Strategies for Parallel Processing
(JSPPS 2004 (June 2004).

[18] GUPTA, A., LIN, B., AND DINDA, P. A. Measur-
ing and understanding user comfort with resource bor-
rowing. In Proceedings of the 13th IEEE International
Symposium on High Performance Distributed Computing
(HPDC 2004) (June 2004).

[19] HOLMAN, P., AND ANDERSON, J. Guaranteeing pfair
supertasks by reweighting. In Proceedings of the 22nd
IEEE Real-time Systems Symposium (December 2001),
pp. 203–212.

[20] HOUSE, S., AND NIEHAUS, D. Kurt-linux support for
synchronous fine-grain distributed computations. In Pro-
ceedings of the Sixth IEEE Real Time Technology and Ap-
plications Symposium (RTAS 2000) (2000).

[21] ID SOFTWARE. Doom95.
http://www.pcgameworld.com/details.php/get/5001.

[22] ID SOFTWARE. Quakeii.
http://www.idsoftware.com/games/quake/quake2/.

10

[23] INGRAM, D., AND CHILDS, S. The linux-srt integrated
multimedia operating system: bringing qos to the desk-
top. In Proceedings of the IEEE Real-time Technologies
and Applications Symposium (RTAS) (2001).

[24] JACKSON, D., SNELL, Q., AND CLEMENT, M. Core
algorithms of the maui scheduler. In Proceedings of the
7th Workshop on Job Scheduling Strategies for Parallel
Processing (JSSPP 2001) (2001), pp. 87–102.

[25] JETTE, M. Performance characteristics of gang schedul-
ing in multiprogrammed environments. In Proceedings
of the 1997 ACM/IEEE conference on Supercomputing
(1997), pp. 1–12.

[26] JONES, M., MCCULLEY, D., FORIN, A., LEACH, P.,
ROSU, D., AND ROBERTS, D. An overview of the rialto
real-time architecture. In Proceedings of the 7th ACM
SIGOPS European Workshop (1996).

[27] LIN, B., AND DINDA, P. User-driven scheduling of in-
teractive virtual machines. In Proceedings of the Fifth
International Workshop on Grid Computing (Grid 2004)
(November 2004).

[28] LINUX VSERVER PROJECT. http://www.linux-
vserver.org.

[29] LIU, C. L., AND LAYLAND, J. W. Scheduling algo-
rithms for multiprogramming in a hard real-time environ-
ment. Journal of the ACM 20, 1 (January 1973), 46–61.

[30] LIU, J. Real-time Systems. Prentice Hall, 2000.

[31] MOIR, M., AND RAMAMURTHY, S. Pfair scheduling of
fixed and migrating periodic tasks on multiple resources.
In IEEE Real-Time Systems Symposium (1999), pp. 294–
303.

[32] NIEH, J., AND LAM, M. The design, implementation,
and evaluation of SMART: A scheduler for multimedia
applications. In Proceedings of the 16th ACM Symposium
on Operating Systems Principles (October 1997).

[33] POLZE, A., FOHLER, G., AND WERNER, M. Pre-
dictable network computing. In Proceedings of the 17th
International Conference on Distributed Computing Sys-
tems (ICDCS ’97) (May 1997), pp. 423–431.

[34] RIPEANU, M., BOWMAN, M., CHASE, J., FOSTER, I.,
AND MILENKOVIC, M. Globus and planetlab resource
management solutions compared. In Proceedings of the
13th IEEE Symposium on High Performance Distributed
Computing (HPDC 2004) (June 2004).

[35] SCOTT A. BRANDT, SCOTT BANACHOWSKI, C. L.,
AND BISSON, T. Dynamic integrated scheduling of hard
real-time, soft real-time and non-real-time processes. In
Proceedings of the 24th IEEE Real-Time Systems Sympo-
sium (December 2003).

[36] SHOYKHET, A., LANGE, J., AND DINDA, P. Virtu-
oso: A system for virtual machine marketplaces. Tech.
Rep. NWU-CS-04-39, Department of Computer Science,
Northwestern University, July 2004.

[37] SNELL, Q., CLEMENT, M., JACKSON, D., AND GRE-
GORY, C. The performance impact of advance reservation
meta-scheduling. In Proceedings of the 6th Workshop on
Job Scheduling Strategies for Parallel Processing (JSSPP
2000) (2000), pp. 137–153.

[38] SUNDARARAJ, A., AND DINDA, P. Towards virtual net-
works for virtual machine grid computing. In Proceed-
ings of the 3rd USENIX Virtual Machine Research And
Technology Symposium (VM 2004) (May 2004).

[39] SUNDARARAJ, A., GUPTA, A., AND DINDA, P. Dy-
namic topology adaptation of virtual networks of virtual
machines. In Proceedings of the Seventh Workshop on
Langauges, Compilers and Run-time Support for Scal-
able Systems (LCR 2004) (October 2004).

[40] VMWARE. Vmware esx
server-cpu resource management.
http://www.vmware.com/support/esx/doc/res cpu esx.html.

[41] WALDSPURGER, C. A., AND WEIHL, W. E. Lottery
scheduling: Flexible proportional-share resource man-
agement. In Proceedings of the First Symposium on
Operating Systems Design and Implementation (1994),
Usenix.

[42] YODAIKEN, V., AND BARABANOV, M. A real-time
linux, 1997.

11

