

Computer Science Department

Technical Report
NWU-CS-05-13
June 28, 2005

Free Network Measurement For Adaptive Virtualized Distributed Computing

Ashish Gupta Marcia Zangrilli*

Ananth Sundararaj Peter A. Dinda Bruce B. Lowekamp*

Abstract

An execution environment consisting of virtual machines (VMs) interconnected with a
virtual overlay network can use the naturally occurring traffic of an existing, unmodified
application running in the VMs to measure the underlying physical network. Based on
these characterizations, and characterizations of the application's own communication
topology, the execution environment can optimize the execution of the application using
application-independent means such as VM migration and overlay topology changes. In
this paper, we demonstrate the feasibility of such free automatic network measurement by
fusing the Wren passive monitoring and analysis system with Virtuoso's virtual
networking system. We explain how Wren has been extended to support on-line
analysis, and we explain how Virtuoso's adaptation algorithms have been enhanced to use
Wren's physical network level information to choose VM-to-host mappings, overlay
topology, and forwarding rules.

Effort sponsored by the National Science Foundation under Grants ANI-0093221, ACI-0112891, ANI-
0301108, ACI-0203974, EIA-0130869, EIA-0224449, and gifts from VMware, Sun, and Dell. This work
was performed in part using computational facilities at the College of William and Mary that were enabled
by grants from Sun Microsystems, the National Science Foundation, and Virginia's Commonwealth
Technology Research Fund. Zangrilli is partially supported by an Aerospace Graduate Research
Fellowship from the Virginia Space Grant Consortium. Any opinions, findings and conclusions or
recommendations expressed in this material are those of the authors and do not necessarily reflect the
views of the National Science Foundation (NSF), Virginia, VMware, Sun, or Dell.

* Department of Computer Science, College of William and Mary

Keywords: virtual machines, adaptive systems, network measurement, overlay networks

Free Network Measurement For Adaptive Virtualized Distributed Computing

Ashish Gupta Marcia Zangrilli Ananth Sundararaj
Peter Dinda Bruce B. Lowekamp

Abstract

An execution environment consisting of virtual machines
(VMs) interconnected with a virtual overlay network can
use the naturally occurring traffic of an existing, unmodi-
fied application running in the VMs to measure the under-
lying physical network. Based on these characterizations,
and characterizations of the application’s own communica-
tion topology, the execution environment can optimize the
execution of the application using application-independent
means such as VM migration and overlay topology changes.
In this paper, we demonstrate the feasibility of such free au-
tomatic network measurement by fusing the Wren passive
monitoring and analysis system with Virtuoso’s virtual net-
working system. We explain how Wren has been extended
to support on-line analysis, and we explain how Virtuoso’s
adaptation algorithms have been enhanced to use Wren’s
physical network level information to choose VM-to-host
mappings, overlay topology, and forwarding rules.

1 Introduction

Virtual machines interconnected with virtual networks
are an extremely effective platform for high performance
distributed computing, providing benefits of simplicity and
flexibility to both users and providers [1, 4]. We have devel-
oped a virtual machine distributed computing system called
Virtuoso [13] that is based on virtual machine monitors1 and

Effort sponsored by the National Science Foundation under Grants ANI-
0093221, ACI-0112891, ANI-0301108, ACI-0203974, EIA-0130869,
EIA-0224449, and gifts from VMware, Sun, and Dell. This work was per-
formed in part using computational facilities at the College of William and
Mary that were enabled by grants from Sun Microsystems, the National
Science Foundation, and Virginia’s Commonwealth Technology Research
Fund. Zangrilli is partially supported by an Aerospace Graduate Research
Fellowship from the Virginia Space Grant Consortium. Any opinions, find-
ings and conclusions or recommendations expressed in this material are
those of the authors and do not necessarily reflect the views of the National
Science Foundation (NSF), Virginia, VMware, Sun, or Dell.

1Specifically, VMWare GSX Server 2.5, although that is not a require-
ment of either Virtuoso nor of the work described in this paper. The VNET
virtual networking component of Virtuoso requires only that a virtual in-
terface be exposed. It has been used successfully with entirely different
VMMs, such as User Mode Linux. Wren’s kernel extensions and userland
analysis daemon require only Linux.

a virtual overlay network system called VNET [14].
A platform like Virtuoso also provides key opportunities

for resource and application monitoring, and adaptation. In
particular, it can:

1. Monitor the application’s traffic to automatically and
cheaply produce a view of the application’s network
demands. We have developed a tool, VTTIF [2], that
accomplishes this.

2. Monitor the performance of the underlying physical
network by use the application’s own traffic to automatically
and cheaply probe it, and then use the probes to produce
characterizations. This paper describes how this is done.

3. Adapt the application to the network to make it run faster or
more cost-effectively. This paper extends our previous
adaptation work [16, 15] with algorithms that make use of
network performance information.

4. Reserve resources, when possible, to improve
performance [6, 7].

Virtuoso is capable of accomplishing these feats using ex-
isting, unmodified applications running on existing, unmod-
ified operating systems.

We build on the success of our Wren passive monitoring
and network characterization system [18, 17] to accomplish
(2) above. Wren consists of a kernel extension and a user-
level daemon. Wren can:

1. Observe every incoming and outgoing packet arrivals in the
system with low overhead.

2. Analyze these arrivals using state-of-the-art techniques to
derive from them latency and bandwidth information for all
hosts that the present host communications with. Earlier
work described offline analysis techniques. This paper
describes online techniques to continuously and
dynamically update the host’s view of the network.

3. Collect latency, available bandwidth, and throughput
information so that an adaptation algorithm can have a
bird’s eye view of the physical network, just as it has a
bird’s eye view of the application topology via VTTIF. This
new work is described for the first time here.

1

send() recv()

UDP TCP

IP

init() collect()

Buffer

SOAP Interface

analysis

collector

provider

Grid
Application

Network

Wren Packet Trace Facility

Wren user−level

K
er

ne
l l

ev
el

U
se

r
le

ve
l

Figure 1. Wren architecture.
4. Answer queries about the bandwidth and latency between

any pair of machines in the virtual network. This is
described for the first time here.

In the following, we begin by describing and evaluating
the online Wren system (Section 2) and how it interacts with
the Virtuoso system (Section 3). In Section 4, we describe
adaptation algorithms in Virtuoso that make use of Wren’s
view of the physical network. While we evaluate Wren in
a live environment and use live performance data, our eval-
uation of the adaptation algorithms is currently limited to
simulation.

2 Wren online
The Wren architecture is shown in Figure 1. The key fea-

ture Wren uses is kernel-level packet trace collection. These
traces allow precise timestamps of the arrival and departure
of packets on the machines. The precision of the times-
tamps is necessary to observe the behavior of small groups
of packets on the network. A user-level component collects
the traces from the kernel. Run-time analysis determines
available bandwidth and the measurements are reported to
other applications through a SOAP interface. Alternatively,
the packet traces can be transmitted to a remote repository.

Because we are targeting applications with potentially
bursty and irregular communication patterns, many appli-
cations will not generate enough traffic to saturate the net-
work and provide useful information on the current band-
width achievable on the network. The key observation be-
hind Wren is that even when the application is not saturating
the network it is sending bursts of traffic that can be used to
measure the available bandwidth of the network.

2.1 Online analysis

Wren’s general approach and collection overhead have
been presented and analyzed in previous papers [18, 17].

To support Virtuoso’s adaptation, however, two changes are
required. First, previous implementations of Wren have re-
lied on static offline analysis. We describe here our online
analysis algorithm used to report available bandwidth mea-
surements using our SOAP interface. Second, previous im-
plementations have relied on detecting fixed-size bursts of
network traffic. The new online tool scans for maximum-
sized trains that can be formed using the collected traffic.
This approach results in more measurements taken from a
smaller amount of traffic.

The analysis used by WrenTool is based on the self-
induced congestion (SIC) algorithm [10, 11]. Active im-
plementations of this algorithm generate trains of packets
at progressively faster rates until increases in one-way de-
lay are observed, indicating queues building along the path
resulting from the available bandwidth being consumed.
We apply similar analysis to our passively collected traces,
but our key challenge is identifying appropriate trains from
the stream of packets generated by the TCP sending algo-
rithm. ImTCP integrates an active SIC algorithm into a TCP
stack, waiting until the congestion window has opened large
enough to send an appropriate length train and then delay-
ing packet transmissions until enough packets are queued to
generate a precisely spaced train [8]. Wren avoids modify-
ing the TCP sending algorithm, and in particular delaying
packet transmission.

The tradeoff between the two types of active implemen-
tation is that Wren must select the data naturally available
in the TCP flow. Although Wren has less control over the
trains and selects shorter trains than would deliberately be
generated by active probing, over time the burstiness of the
TCP process produces many trains at a variety of rates [12],
thus allowing bandwidth measurements to be made. There
are elements in common with TCP Vegas, Westwood, and
FastTCP, but those approaches deliberately increase the
congestion window until one-way delay increases, whereas
we do not require the congestion window to expand until
long-term congestion is observed and can detect congestion
using bursts at slower average sending rates.

The online WrenTool sorts information about incoming
and outgoing packets by source and destination IP address.
For each source/destination pair we sort the packets by in-
creasing sequence number and apply our one-sided avail-
able bandwidth algorithm.

The first step in our one-sided algorithm is to group pack-
ets into trains. We look at the relationship between the inter-
departure times of sequential data packets. If interdeparture
times of successive pairs are similar, then the packets are de-
parting the machine at approximately the same rate. Let ∆0

be the interdeparture time between data packets 0 and 1. To
form a train, the interdeparture times ∆i between each suc-
cessive pair of packets i and i+1 in the train must satisfy the
requirement that mini(log(∆i)) > maxj(log(∆j))−α, es-

2

sentially requiring consistent spacing between the packets.
For these experiments, we accepted trains where α = 1.
Because of the bursty transmission of packets within any
TCP flow [12], interdeparture times typically vary by sev-
eral orders of magnitude even during bulk data transfers,
therefore this approach selects only the more consistently
spaced bursts as valid trains. We impose a minimum length
of 7 packets for valid trains.

The first step in processing a train is to use a pairwise
comparison test to determine the trend in the RTTs of the
packets in that train. If ∀i : RTTi < RTTi+1 then the train
has an increasing trend. Otherwise, the train trend is labeled
as non-increasing. Next, we calculate the initial sending
rate (ISR) by dividing the total number of bits in the train by
the difference between the end time and the start time. If the
train has a non increasing trend, we know that the train ISR
did not cause queuing on the path. Therefore, we report the
ISR as our lower bound available bandwidth measurement
when the trend of the train is non increasing. Conversely,
if a train presents an increasing trend, its ISR is an upper
bound for the available bandwidth.

All available bandwidth observations are passed to the
Wren observation thread. The observation thread provides
a SOAP interface that clients can use to receive the stream
of measurements produced using application traffic. Be-
cause the trains are short and represent only a singleton ob-
servation of an inherently bursty process, multiple observa-
tions are required to converge to an accurate measurement
of available bandwidth.

2.2 Overheads

Our evaluation of the overhead of using Wren for analy-
sis has shown that the collection of data in the kernel adds
essentially no overhead to data transmission and reception,
and has no effect on throughput or latency. The primary
sources of overhead are copying the trace data to user-level
and either the cost of local analysis or of sending the data to
another machine to be analyzed. Figure 2 shows the runtime
of the STREAM benchmark across a range of polling rates.
Here the data is collected from the kernel and transmitted
to a remote host for analysis at the given intervals. Because
the STREAM benchmark does not saturate the host’s net-
work connection, the outgoing packet traces have no effect.
We have found that polling intervals of one second are suf-
ficient to capture an application’s traffic without influencing
that application’s performance.

2.3 Performance

First, we evaluate our new variable train-length algo-
rithm against controlled congestion on a closed testbed. We
generate a fixed-rate UDP stream that shares the same link
as the traffic between the machines. We used iperf to gen-
erate TCP traffic on this link, reporting its throughput at 1
second intervals. Figure 3 illustrates the resulting observa-

11

12

13

14

0.01 0.1 1

E
xe

cu
tio

n
T

im
e

(s
ec

)

Polling Interval (sec)

Baseline Execution vs Polling Times for Streams

Wren polling
Without Wren

Figure 2. The execution time of the STREAM
benchmark when monitored by the Wren sys-
tem using a range of polling intervals.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 10 20 30 40 50 60

ba
nd

w
id

th
 (

M
bp

s)

Time (sec)

Available Bandwidth on Controlled Testbed

iperf throughput
wren availbw

actual availbw

Figure 3. The results of applying the WrenTool
to bursty traffic generated on a testbed with
a controlled level of available bandwidth.

tions. The WrenTool is able to measure the available band-
width on the link throughout the experiment regardless of
whether iperf is currently saturating the link.

To validate the combination of Wren monitoring an ap-
plication using VNET we ran a simple BSP-style commu-
nication pattern generator. Figure 4 shows the results of
this experiment, with the throughput achieved by the appli-
cation during its bursty communication phase and Wren’s
available bandwidth observations. Although the applica-
tion never achieved significant levels of throughput, Wren
was able to measure the available bandwidth. Validating
these results across a WAN is difficult, but iperf achieved
approximately 24Mbps throughput when run following this
experiment, which is in line with our expectations based on
Wren’s observations and the large number of connections
sharing W&M’s 150Mbps Abilene connection.

3

 0

 10

 20

 30

 40

 50

 60

 0 10 20 30 40 50 60

ba
nd

w
id

th
 (

M
bp

s)

Time (sec)

Wren monitoring neighbor communication patterns

application throughput
wren availbw

Figure 4. Wren observing a neighbor com-
munication pattern sending 200K messages
within VNET.

Wren
Network
Inference

Host OS Kernel

VNET (Forwarding)TCP / UDP
Forwarding

Layer 2 Network
Interface

VTTIF Application Inference

VADAPT Adaptation

Virtual Machine Monitor

Guest OS Kernel

Application

Virtual Machine

LAN Other VNET daemon

Figure 5. Virtuoso’s interaction with Wren.
The highlighted boxes are components of Vir-
tuoso.

3 Virtuoso and Wren

Virtuoso [13, 1], is a system for virtual machine dis-
tributed computing where the virtual machines are intercon-
nected with VNET, a virtual overlay network. The VTTIF
(virtual traffic and topology inference framework) compo-
nent observes every packet sent by a VM and infers from
this traffic a global communication topology and traffic load
matrix among a collection of VMs. Wren uses the traffic
generated by VNET to monitor the underlying network and
makes its measurements available to Virtuoso’s adaptation
framework, as seen in Figure 5.

3.1 VNET

VNET [14, 16] is the part of Virtuoso that creates and
maintains the networking illusion that the user’s virtual ma-
chines (VMs) are on the user’s local area network. Each
physical machine that can instantiate virtual machines (a
host) runs a single VNET daemon. One machine on the

user’s network also runs a VNET daemon. This machine
is referred to as the Proxy. Each of the VNET daemons is
connected by a TCP or a virtual UDP connection (a VNET
link) to the VNET daemon running on the Proxy. This is the
initial star topology that is always maintained. Additional
links and forwarding rules can be added or removed at any
time to improve application performance.

The VNET daemon running on a machine opens the
machine’s virtual (i.e., VMM-provided attachments to
the VMs’ interfaces) and physical Ethernet interfaces in
promiscuous mode. Each packet captured from an interface
or received on a link is matched against a forwarding table
to determine where to send it, the possible choices being
sending it over one of the daemon’s outgoing links or writ-
ing it out to one of the local interfaces. Each successfully
matched packet is also passed to VTTIF to determine the
local traffic matrix. Each VNET daemon periodically sends
its inferred local traffic matrix to the VNET daemon on the
Proxy. The Proxy, through its physical interface, provides
a network presence for all the VMs on the user’s LAN and
makes their configuration a responsibility of the user and
his site administrator.

3.2 VTTIF

The VTTIF component integrates with VNET to auto-
matically infer the dynamic topology and traffic load of ap-
plications running inside the VMs in the Virtuoso system.
In our earlier work [2], we demonstrated that it is possi-
ble to successfully infer the behavior of a BSP application
by observing the low level traffic sent and received by each
VM in which it is running. We have also shown [16] how
to smooth VTTIF’s reactions so that adaptation decisions
made on its output cannot lead to oscillation. The reaction
time of VTTIF depends on the rate of updates from the in-
dividual VNET daemons and on configuration parameters.
Beyond this rate, we have designed VTTIF to stop reacting,
settling into a topology that is a union of all the topologies
that are unfolding in the network.

VTTIF works by examining each Ethernet packet that a
VNET daemon receives from a local VM. VNET daemons
collectively aggregate this information producing a global
traffic matrix for all the VMs in the system. To provide a
stable view of dynamic changes, it applies a low pass fil-
ter to the updates, aggregating the updates over a sliding
window and basing its decisions upon this aggregated view.
The application topology is then recovered from this matrix
by applying normalization and pruning techniques.

Since the monitoring is done below the VM, it does not
depend on the application or the operating system in any
manner. VTTIF automatically reacts to interesting changes
in traffic patterns and reports them, driving adaptation.

4

3.3 Integrating Virtuoso and Wren

Virtuoso and Wren are integrated by incorporating the
Wren extensions into the Host operating system of the ma-
chines running VNET. In this position, Wren monitors the
traffic between VNET daemons, not between individual
VMs. Both the VMs and VNET are oblivious to this moni-
toring, except for a small performance degradation.

The local instance of Wren is made visible to Virtuoso
through it’s SOAP interface. VTTIF executes nonblocking
calls to Wren to collect updates on available bandwidth and
latency from the local host to other VNET hosts. VTTIF
uses VNET to periodically send the local matrices to the
Proxy machine, which maintains global matrices with infor-
mation about every pair of VNET hosts. In practice, only
those pairs whose VNET daemons exchange messages have
entries. Through these mechanisms, the Proxy has a view of
the physical network interconnecting the machines running
VNET daemons and a view of the application topology and
traffic load of the VMs.

3.4 Overheads

The overheads of integrating Wren with Virtuoso stem
from the extra kernel-level Wren processing each VNET
transmission sees, Wren user-level processing of data into
bandwidth and latency estimates, and the cost of using
VNET and VTTIF to aggregate local Wren information into
a global view. Of these, only the first is in the critical path
of application performance. As described in Section 2.2,
the kernel-level processing has no distinguishable effect on
either throughput or latency. With VTTIF, latency is unaf-
fected, while throughput is affected by ∼1%. The cost of
local processing is tiny and can be delayed.

4 Adaptation using network information
As shown in Figure 5, the VADAPT component of Vir-

tuoso, using the VTTIF and Wren mechanisms, has a view
of the dynamic performance characteristics of the physical
network interconnecting the machines running VNET dae-
mons and a view of the the demands that the VMs place on
it. More specifically, it receives:

1. A graph representing the application topology of the VMs
and a traffic load matrix among them, and

2. Matrices representing the available bandwidth and latency
among the Hosts running VNET daemons.

VADAPT’s goal is to use this information to choose a con-
figuration that maximizes the performance of the applica-
tion running inside the VMs. A configuration consists of

1. The mapping of VMs to Hosts running VNET daemons,

2. The topology of the VNET overlay network,

3. The forwarding rules on that topology, and

4. The choice of resource reservations on the network and the
hosts, if available.

In previous work [16, 15], we have demonstrated heuris-
tic solutions to a subset of the above problem. In particular,
we have manipulated the configuration (sans reservations)
in response to application information. In the following,
we expand this work in two ways. First, we show how to
incorporate the information about the physical network in
a formal manner. Second, we describe two heuristic ap-
proaches for addressing the formal problem and present an
initial evaluation of them.

4.1 Problem formulation

VNET Topology: We are given a complete directed
graph G = (H,E) in which H is the set of all of the Hosts
that are running VNET daemons and are capable of hosting
a VM.

VNET Links: Each edge e = (i, j) ∈ E is a prospec-
tive link between VNET daemons. e has a real-valued ca-
pacity ce which is the bandwidth that the edge can carry in
that direction. This is the available bandwidth between two
Hosts (the ones running VNET daemons i and j) reported
by Wren.

VNET Paths: A path, p(i, j), between two VNET dae-
mons i, j ∈ H is defined as an ordered collection of links in
E, 〈(i, v1), (v1, v2), ..., (vn, j)〉, which are the set of VNET
links traversed to get from VNET daemon i to j given the
current forwarding rules and topology, v1, . . . vn ∈ H . P is
the set of all paths.

VM Mapping: V is the set of VMs in the system, while
M is a function mapping VMs to daemons. M(k) = l if
VM k ∈ V is mapped to Host l ∈ H .

VM Connectivity: We are also given a set of ordered
3-tuples A = (S,D,C). Any tuple, A(si, di, ci), corre-
sponds to an entry in the traffic load matrix supplied by
VTTIF. More specifically, consider two VMs, k,m ∈ V ,
where M(k) = si and M(m) = di, then ci is the traffic
matrix entry for the flow from VM k to VM m.

Configurations: A configuration CONF = (M,P)
consists of the VM to VNET daemon mapping function M
and the set of paths P among the VNET daemons needed to
assure the connectivity of the VMs. The topology and for-
warding rules for the VNET daemons follow from the set of
paths.

Residual Capacity of a VNET Link: Each tuple, Ai,
can be mapped to one of multiple paths, p(si, di). Once a
configuration has been determined, each VNET link e ∈ E
has a real-valued residual capacity rce which is the band-
width remaining unused on that edge.

Bottleneck Bandwidth of a VNET Path: For each
mapped paths p(si, di) we define its bottleneck bandwidth,
b(p(si, di)), as (min(cre)).∀e ∈ p(si, di).

5

Optimization Problem: We want to choose a configu-
ration CONF which maps every VM in V to a VNET dae-
mon, and every input tuple Ai to a network path p(si, di)
such that the total bottleneck capacity on the VNET graph,

∑

p∈P

b(p(si, di)) (1)

is maximized or minimized subject to the constraint that

∀e ∈ E : rce ≥ 0 (2)

The intuition behind maximizing the residual bottleneck
capacity is to leave the most room for the application to in-
crease performance within the current configuration. Con-
versely, the intuition for minimizing the residual bottleneck
capacity is to increase room for other applications to enter
the system.

This problem is NP-complete by reduction from the edge
disjoint path problem [3]. 2

4.2 A greedy heuristic solution

In an online system of any scale, we are unlikely to
be able to enumerate all possible configuration to choose
a good one. Our approach is necessarily heuristic and is
based on a greedy strategy with two sequential steps: (1)
find a mapping from VMs to Hosts, and (2) determine paths
for each pair of communicating VMs.

4.2.1 A greedy heuristic mapping VMs to Hosts

VADAPT uses a greedy heuristic algorithm to map virtual
machines onto physical hosts. The input to the algorithm is
the application communication behavior as captured by VT-
TIF and available bandwidth between each pair of VNET
daemons, as reported by Wren, both expressed as adjacency
lists.

The algorithm is as follows:

1. Generate a new VM adjacency list which represents
the traffic intensity between VNET daemons that is
implied by the VTTIF list and the current mapping of
VMs to hosts.

2. Order the VM adjacency list by decreasing traffic in-
tensity.

3. Extract an ordered list of VMs from the above with a
breadth first approach, eliminating duplicates.

4. For each pair of VNET daemons, find the maxi-
mum bottleneck bandwidth (the widest path) using
the adapted Dijkstra’s algorithm described in Sec-
tion 4.2.3.

5. Order the VNET daemon adjacency list by decreasing
bottleneck bandwidth.

2The proof is available on virtuoso.cs.northwestern.edu

6. Extract an ordered list of VNET daemons from the
above with a breadth first approach, eliminating du-
plicates.

7. Map the VMs to VNET daemons in order using the or-
dered list of VMs and VNET daemons obtained above.

8. Compute the differences between the current mapping
and the new mapping and issue migration instructions
to achieve the new mapping.

4.2.2 A greedy heuristic mapping communicating VMs
to paths

Once the VM to Host mapping has been determined,
VADAPT uses a greedy heuristic algorithm to determine
a path for each pair of communicating VMs. The VNET
links and forwarding rules derive from the paths. As above
VADAPT uses VTTIF and Wren outputs expressed as adja-
cency lists as inputs.

The algorithm is as follows:

1. Order the set A of VM to VM communication de-
mands in descending order of communication intensity
(VTTIF traffic matrix entry).

2. Consider each 3-tuple in the ordered set A, making
a greedy mapping of it onto a path. The mapping is
on the current residual capacity graph G and uses an
adapted version of Dijkstra’s algorithm described in
Section 4.2.3. No backtracking is done at this stage.

4.2.3 Adapted Dijkstra’s algorithm

We use a modified version of Dijkstra’s algorithm to select
a path for each 3-tuple that has the maximum bottleneck
bandwidth. This is the “select widest” approach. Notice
that as there is no backtracking, it is quite possible to reach a
point where it is impossible to map a 3-tuple at all. Further-
more, even if all 3-tuples can be mapped, the configuration
may not minimize/maximize Equation 1 as the greedy map-
ping for each 3-tuple doesn’t guarantee a global optimal.

Dijkstra’s algorithm solves the single-source shortest
paths problem on a weighted, directed graph G = (H,E).
We have created a modified Dijkstra’s algorithm that solves
the single-source widest paths problem on a weighted di-
rected graph G = (H,E) with a weight function c : E → R

which is the available bandwidth in our case.
As in Dijkstra’s algorithm we maintain a set U of vertices

whose final widest-path weights from the source u have al-
ready been determined. That is, for all vertices v ∈ U , we
have b[v] = γ(u, v), where γ(u, v) is the widest path value
from source u to vertex v. The algorithm repeatedly selects
the vertex w ∈ H − U with the largest widest-path esti-
mate, inserts w into U and relaxes (we slightly modify the
original Relax algorithm) all edges leaving w. Just as in the

6

implementation of Dijkstra’s algorithm, we maintain a pri-
ority queue Q that contains all the vertices in H −U , keyed
by their b values.

Similar to Dijkstra’s algorithm we initialize the widest
path estimates and the predecessors by the following
procedure.

Procedure Initialize(G, u)
1: for each vertex v ε H[G] do
2: {

b[v] ← 0
π[v] ← NIL

}
3: end for
4: b[u] ← ∞

The modified process of relaxing an edge (w, v) consists
of testing whether the bottleneck bandwidth decreases for
a path from source u to vertex v by going through w, if it
does, then we update b[v] and π[v].

Procedure ModifiedRelax(w, v, c)
1: if b[v] < min(b[w], c(w, v)) then
2: {

b[v] ← min(b[w], c(w, v))
π[v] ← w

}
3: end if

We can very easily see the correctness of Modi-
fiedRelax. After relaxing an edge (w, v), we have b[v] ≥
min(b[w], c(w, v)). As, if b[v] < min(b[w], c(w, v)), then
we would set b[v] to min(b[w], c(w, v)) and hence the
invariant holds. Further, if b[v] ≥ min(b[w], c(w, v)) to
begin with, then we do nothing and the invariant still holds.

The following is the adapted version of Dijkstra’s
algorithm to find the widest path for a single tuple.

Procedure AdaptedDijkstra(G, c, u)
1: Initialize(G, u)
2: U ← ∅
3: Q ← H[G]
4: while Q �= ∅ do {loop invariant: ∀ v ε U , b(v) =

γ(u, v)}
5: {

w ← ExtractMax(Q)
U ← U ∪ w

6: for each vertex v ε Adj[w] do
7: {

ModifiedRelax(w, v, c)
}

8: end for
}

9: end while

4.2.4 Correctness of adapted Dijkstra’s algorithm

Similar to the proof of correctness for Dijkstra’s shortest
paths algorithm, we can prove that the adapted Dijkstra’s
algorithm is correct by proving by induction on the size of
set U that the invariant, ∀v ∈ U , b[v] = γ(u, v), always
holds.

Base case: Initially U = ∅ and the invariant is trivially
true.

Inductive step: We assume the invariant to be true for
|U | = i.

Proof: Assuming the truth of the invariant for |U | = i,
we need to show that it holds for |U | = i + 1 as well.

Let v be the (i+1)th vertex extracted from Q and placed
in U and let p be the path from u to v with weight b[v]. Let
w be the vertex just before v in p. Since only those paths to
vertices in Q are considered that use vertices from U , w ∈
U and hence by the inductive step we have b[w] = γ(u,w).

Next, we can prove that p is the widest path from u to
v by contradiction. Let us assume that p is not the widest
path and instead p∗ is the widest path from u to v. Since this
path connects a vertex in U to a vertex in H−U , there must
be a first edge, (x, y) ∈ p∗ where x ∈ U and y ∈ H − U .
Hence the path p∗ can now be represented as p1.(x, y).p2.
By the inductive hypothesis b[x] = γ(u, x) and since p∗ is
the widest path, it follows that p1.(x, y) must be the widest
path from w to y, as if there had been a path with higher
bottleneck bandwidth, that would have contradicted the op-
timality of p∗. When the edge x was placed in U , the edge
(x, y) was relaxed and hence b[y] = γ(u, y). Since v was
the (i + 1)th vertex chosen from Q while y was still in Q,
it implies that b[v] ≥ b[y]. Since we do not have any neg-
ative edge weights and γ(s, v) is the bottleneck bandwidth
on p∗, that combined with the previous expression gives us
bottleneck bandwidth of p∗ ≤ b[v] which is the bottleneck
bandwidth of path p. This contradicts our first assumption
that path p∗ is wider than path p.

Since we have proved that the invariant holds for the base
case and that the truth of the invariant for |U | = i implies
the truth of the invariant for |U | = i+1, we have proved the
correctness of the adapted Dijkstra’s algorithm using math-
ematical induction.

4.3 A simulated annealing heuristic solution

Simulated annealing [5] (SA) is a probabilistic evolu-
tionary method that is well suited to solving global op-
timization problems, especially if a good heuristic is not
known. SA’s ability to locate a good, although perhaps non-
optimal solution for a given objective function in the face

7

of a large search space is well suited to our problem. Since
the physical layer and VNET layer graphs in our system are
fully connected there are a great many possible forwarding
paths and mappings. Additionally, as SA incrementally im-
proves its solution with time, there is some solution avail-
able at all times.

The basic approach is to start with some initial solution
to the problem computed using some simple heuristic such
as the adapted Dijkstra based heuristic described above. SA
iterations then attempt to find better solutions by perturb-
ing the current solution and evaluating its quality using a
cost function. At any iteration, the system state is the set of
prospective solutions. The random perturbations of the SA
algorithm make it possible to explore a diverse range of the
search space including points that may appear sub-optimal
or even worse then previous options but may lead to bet-
ter solutions later on. The probability of choosing options
that are worse than those in the present iteration is reduced
as the iterations proceed, focusing increasingly on finding
better solutions close to those in the current iteration. In
physical annealing, this probability results from the present
temperature of a metal that is slowly cooled.

4.3.1 Perturbation function

The role of the perturbation function (PF) is to find neigh-
bors of the current state that are then chosen according to
a probability function P (dE, T) of the energy difference
dE = E(s′)−E(s) between the two states, and of a global
time-varying parameter T (the temperature). The proba-
bility function we use is edE/T if dE is negative, 1 oth-
erwise. As iterations proceed T is decreased which reduces
the probability of jumping into states that are worse than the
current state.

Given a configuration CONF = (M,P) , where P is a
set of forwarding paths p(i, j) and each p(i, j) is a sequence
of ki,j vertices vi, v1, v2,, vj , the perturbation function
selects a neighbor N(CONF) of the current configuration
with the following probabilities: For each p(i, j) ∈ P :

1. With probability 1/3 PF adds a random vertex vr into
the path sequence where vr ∈ V and /∈ p(i, j). Note
that the set V consists of all potential physical nodes
which are running VNET and hence are capable of
routing any VNET traffic. This step attempts to mod-
ify each path by randomly adding a potential overlay
node in the existing forwarding path.

2. With probability 1/3 PF deletes a random vertex vr

from the path sequence where vr ∈ p(i, j).

3. With probability 1/3 PF swaps two nodes vx and vy

where x �= y and vx, vy ∈ p(i, j).

4.3.2 Cost evaluation function

The cost evaluation function CEF computes the cost of
a configuration C using Equation 1. After a neighbor
N(C) is found using the perturbation function, a cost
difference CEF (N(C)) − CEF (C) is computed. This
is the energy difference used to compute the future path
in the simulated annealing approach using a probability
e(CEF(N(C))−CEF(C))/t if the difference is negative, 1 oth-
erwise. As iterations proceed and temperature decreases,
the SA algorithm finally converges to the best state it en-
counters in its search space.

4.3.3 Algorithm

The following is our simulated annealing algorithm:
Procedure anneal(C0, t0, a,PF ,CEF)

1: t = t0
2: C = C0

3: while t > tmin do
4: for i = 0 to iterationCount do
5: if staleIterations = staleThreshold then
6: Perturb Mapping
7: stateIterations = 0
8: end if
9: N = PF (C)

10: dE = CEF (N) − CEF (C)
11: if dE < 0 then
12: With probability edE/t let C = N
13: else
14: let C = N
15: staleIterations = 0
16: end if
17: staleIterations = staleIterations + 1
18: end for
19: t = t.a
20: end while

The important factors which affect the performance of
the simulated annealing algorithm are (1) the temperature
schedule, which decides how temperature is modified after
each set of iterations, and (2) the perturbation function PF .
The choice of these perturbation is especially critical be-
cause it must be able to find neighbors with similar energy
levels as previous states. Our evaluation has shown empiri-
cally that the PF described above is very effective.

Perturbing the mapping: On a typical iteration, our al-
gorithm only perturbs the current forwarding paths. To also
explore new mappings of the VMs to different VNET hosts,
we also perturb that mapping. However, as perturbing a
mapping effectively resets the forwarding paths, we perturb
the mappings with a lower frequency. As the temperature
decreases, the change in CEF for new configurations also
falls. Our SA algorithm keeps track of CEF and after a
certain stalenessfactor when the CEF does not change for
a certain number of iterations, we perturb the mapping. A

8

non-changing CEF suggests that the SA algorithm has con-
verged to a good solution for the particular mapping. After
each iteration, we store its best solution. We can output a
solution at any time.

Multi-constrained Optimization: One of the strengths
of the simulated annealing technique is that it is straightfor-
ward to include complex objective functions. To do so, only
the objective function evaluation needs to be changed to re-
turn the appropriate cost for an objective function and the
annealing process automatically explores the search space
appropriately using this new cost function.

4.4 Performance

Because we have not yet coupled the entire real-time
toolchain, our evaluation is done in simulation, using Wren
measurements collected from observing VNET data to the
extent possible. We also evaluate our algorithms by posing a
challenging adaptation problem, and evaluate their scalabil-
ity using a large-scale problem. In each scenario the goal is
to generate a configuration consisting of VM to Host map-
pings and paths between the communicating VMs that max-
imizes the total residual bottleneck bandwidth (Section 4.1).
We compare the greedy heuristic (GH), simulated anneal-
ing approach (SA) and simulated annealing with the greedy
heuristic solution as the starting point (SA+GH). In addition
at all points in time we also maintain the best solution found
so far with (SA+GH), we call this (SA+GH+B), where ’B’
indicates the best solution so far. The W&M and NWU
setup had a solution space small enough to enumerate all
possible configurations to find the optimal solution.

4.4.1 Wren measurements for William and Mary
(W&M) and Northwestern (NWU)

We have created a testbed of Wren-enabled machines : two
at William and Mary and two at Northwestern as shown in
Figure 6. We have successfully run VNET on top of Wren
on these systems with Wren using VM traffic to characterize
the network connectivity, as shown in Figure 4. At the same
time Wren provides its available bandwidth matrix, VTTIF
provided the (correct) application topology matrix. The full
Wren matrix is used in Section 4.4.2.

4.4.2 Adaptation in W&M and NWU testbed

We evaluated our adaptation algorithms for an application
running inside of VMs hosted on the W&M and NWU
testbed in simulation. The VMs were running the NAS
MultiGrid benchmark. The lower part of Figure 6 shows
the application topology inferred by VTTIF for a 4 VM
NAS MultiGrid benchmark. The thickness of the arrows
are directly proportional to the bandwidth demand in that
direction.

Figure 7 shows the performance of our algorithms as a
function of time. The two flat lines indicate the heuris-
tic (GH) performance and the optimal cost of the objec-

server

server

server

server

NWU domain WM domain

lr3.cs.wm.edu

lr4.cs.wm.edu

minet-1.cs.northwestern.edu

minet-2.cs.northwestern.edu

90.2

1

2

3

4

84.32

75.1
74.8

91.52

91.92

74.275.2

75.4 74.3

73.8 74.6

VM1

33.21

3.22

32.01

31.89

0

31.97

2.79

34.60
33.42

33.67

3.04

35.04

VM2

VM3

VM4

NAS MultiGrid Benchmark

1

2

3

4

VNET
Daemons

VMs

Figure 6. The Northwestern / William and Mary
testbed, All numbers are in Mb/sec.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 50 100 150 200 250 300

C
os

t F
un

ct
io

n

Time

Simulated Annealing progress with time

Heuristic cost

Optimal cost

Without heuristic
With heuristic

W heuristic,best solution

Figure 7. Adaptation performance while map-
ping 4 VM all-to-all application onto NWU /
W&M testbed.

tive function (evaluated by hand). Since the solution space
is small with 12 possibilities for the VM to VNET map-
ping, we were able to enumerate all possible configurations
and thus determine the optimal solution. The optimal map-
ping as found by the annealing algorithm is VM 1 → 2,
VM 2 → 4, VM 3 → 3, VM 4 → 1 with an optimal CEF
value of 605.66.

There is a curve for the simulated annealing algorithm,

9

server

server

server

server

server

server
10 amongst all

100

100

100

1000

1000

1000

Domain 1 Domain 2

1

2
3

4

5

6

1

2

3

4

100

100

100

5
VM traffic

Avail BW

Figure 8. A Challenging scenario thet requires
a specific VM to Host mapping for good per-
formance.

SA+GH (annealing algorithm starting with heuristic as the
initial point) and the best cost reached so far, showing their
values over time. We see that the convergence rate of SA
is crucial to obtaining a good solution quickly. Notice that
SA is able to find close to optimal solutions in a reasonably
short time, while GH completes almost instantaneously, but
is not able to find a good solution. SA+GH performs
slightly better than SA. Note that the graph shows, for each
iteration, the best value of the objective function of that it-
eration. SA+GH+B shows the best solution of all the itera-
tions up to the present one by SA+GH.

4.4.3 Challenge

We also designed a challenging scenario, illustrated in Fig-
ure 8, to test our adaptation algorithms. The VNET node
topology consists of two clusters of three machines each.
The domain 1 cluster has 100 Mbps links interconnecting
the machines, while domain 2 cluster has 1000 Mbps links.
The available bandwidth on the link connecting the two do-
mains is 10 Mbps. This scenario is similar to a setup con-
sisting of two tightly coupled clusters connected to each
other via WAN. The lower part of the figure shows the VM
configuration. VMs 1, 2 and 3 communicate with a much
higher bandwidth as compared to VM 4. An optimal so-
lution for this would be to place VMs 1,2 and 3 on the
three VNET nodes in domain 2 and place VM 4 on a VNET
node in domain 1. The final mapping reported by GH is
VM 1 → 5, VM 2 → 4, VM 3 → 6, VM 4 → 1. The final
mapping reported by SA+GH is VM 1 → 4, VM 2 → 5,
VM 3 → 6, VM 4 → 1. Both are optimal for the metric
described before with a final CEF value of 5410.

For this scenario, both, GH and SA are able to find the
optimal mappings quickly. Figure 9(a) illustrates the perfor-
mance of our adaptation algorithms. The physical and ap-

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 0 50 100 150 200 250 300 350 400

C
os

t F
un

ct
io

n

Time

Simulated Annealing progress with time

Heuristic cost Optimal cost

Without heuristic
With heuristic

W heuristic,best solution

(a) Residual BW Only

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 50 100 150 200 250 300 350 400

C
os

t F
un

ct
io

n

Time

Simulated Annealing progress with time

Heuristic cost
Optimal cost

Without heuristic
With heuristic

W heuristic,best solution

(b) Residual BW and Latency

Figure 9. Adaptation performance while map-
ping 6 VM all-to-all application onto the chal-
lenging scenario.

plication topologies have been constructed so that only one
valid solution exists. We see that GH, SA, and SA+GH, all
find the optimal solution quickly with very small difference
in their performance. The large fluctuations in the objective
function value for SA curves is due to the occasional per-
turbation of VM to Host mapping. If a mapping is highly
sub-optimal, the objective function value drops sharply and
remain such until a better mapping is chosen again.

Multi-constraint Optimization: In this scenario, we
also use the annealing algorithm to perform multi-
constrained optimization described previously In Fig-
ure 9(b), we show the performance of our algorithms with
an objective function that takes into account, both, band-
width and latency. Specifically, we have changed Equa-
tion 1 to be

∑

p∈P

b(p(si, di)) +
c

l(p(si, di))
(3)

where l(p) is the path latency for path p and c is a constant.
This penalizes the paths with large latencies. We see that SA
and SA+GH find better solutions than GH. GH provides a

10

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0 50 100 150 200 250 300 350 400

C
os

t F
un

ct
io

n

Time

Simulated Annealing progress with time

Heuristic cost

Without heuristic
With heuristic

W heuristic,best solution

(a) Residual BW Only

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 50000

 0 50 100 150 200 250 300 350 400

C
os

t F
un

ct
io

n

Time

Simulated Annealing progress with time

Heuristic cost

Without heuristic
With heuristic

W heuristic,best solution

(b) Residual BW and Latency

Figure 10. Adaptation performance while
mapping 8 VM all to all to 32 VNET daemons
running on 256 node BRITE topology.

good starting point for SA which further explores the search
space to improve the solution based on the defined multi-
constraint objective.

4.4.4 Large topology

To study scalability of our adaptation algorithms we gen-
erated a 256 node BRITE [9] physical topology. The
BRITE topology was generated using the Waxman Flat-
router model with a uniformly varying bandwidth from 10
to 1024 units. Each node has an out-degree of 2. In this
topology, we chose 32 hosts at random to run VNET dae-
mons, hence each is a potential VM host.

A VNET link is a path in the underlying BRITE physi-
cal topology. We calculated the bandwidths for the VNET
overlay links as the bottleneck bandwidths of the paths in
the underlying BRITE topology connecting the end points
of the VNET link.

Figure 10 shows the performance of our algorithms
adapting a 8 VM patterns application communicating with
a ring topology to the available network resources. It il-
lustrates the point that the simple greedy heuristic is more

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 0 50 100 150 200 250 300 350 400

C
os

t F
un

ct
io

n

Time

Simulated Annealing progress with time

Heuristic cost

Without heuristic
With heuristic

W heuristic,best solution

Figure 11. Adaptation performance while
mapping 8 VMs with ring topology to 32 VNET
daemons.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 0 50 100 150 200 250 300 350 400

C
os

t F
un

ct
io

n

Time

Simulated Annealing progress with time

Heuristic cost

Without heuristic
With heuristic

W heuristic,best solution

Figure 12. Adaptation while mapping 4 VMs
running the NAS MultiGrid benchmark to 32
VNET daemons

suited to smaller scenarios, while simulated annealing is
best used when the quality of the solution is most impor-
tant and computation time can be traded for the same.

GH completes very quickly and produces a solution,
which, at this point in time, cannot be compared to the op-
timal as we do not know the optimal solution. Simulated
annealing on the other hand takes a much longer time, but
produces a much better result at the end of it. Figure 10
shows the scenario until the point where its solution is not
as good as GH, however, given more time and compute re-
sources, it would complete much faster producing a much
closer to optimum solution. However, the same cannot be
noted from the figure.

Figure 10(b) shows the performance using the objective
function of Equation 3. Here, the situation is reversed, not

11

surprisingly given that GH does not consider latency at all.
These results indicate that simulated annealing is very ef-
fective in finding good solutions for larger scale problems
for complex objective functions when it may be difficult to
devise appropriate heuristics.

Figure 11 shows the performance when running a 8
VM patterns application with ring communication topology
mapped onto 32 VNET daemons. In this case we note that
the SA+GH is able to do better than plain SA and GH. So
that re-enforces the point that a reasonable starting heuristic
goes a long way in improving the performance of SA. This
effect can also be see in Figure 12 in which 4 VMs running
the NAS MultiGrid benchmark are mapped onto 32 VNET
daemons.

5 Conclusions
We have described how the Virtuoso and Wren systems

may be integrated to provide a virtual execution environ-
ment that simplifies application portability while provid-
ing the application and resource measurements required for
transparent optimization of application performance. We
have described extensions to the Wren passive monitoring
system that support online available bandwidth measure-
ment and export the results of those measurements via a
SOAP interface. Our results indicate that this system has
low overhead and produces available bandwidth observa-
tions while monitoring bursty VNET traffic. VADAPT,
the adaptation component of Virtuoso uses this informa-
tion provided by Wren along with application characteris-
tics provided by VTTIF to dynamically configure the ap-
plication, maximizing its performance. We formalize the
adaptation problem, and compare two heuristic algorithms
as solutions to this NP-hard problem. We found the greedy
heuristic to perform as well or better than the simulated an-
nealing approach, however, if the heuristic was taken as the
starting point for simulated annealing it performed much
better than the greedy heuristic.

References
[1] FIGUEIREDO, R., DINDA, P. A., AND FORTES, J. A case for grid

computing on virtual machines. In Proceedings of the 23rd Interna-
tional Conference on Distributed Computing Systems (ICDCS 2003)
(May 2003).

[2] GUPTA, A., AND DINDA, P. A. Inferring the topology and traffic
load of parallel programs running in a virtual machine environment.
In Proceedings of the 10th Workshop on Job Scheduling Strategies
for Parallel Processing (JSPPS 2004 (June 2004). To Appear.

[3] KARP, R. Compexity of Computer Computations. Miller, R.E. and
Thatcher, J.W. (Eds.). Plenum Press, New York, 1972, ch. Reducibil-
ity among combinatorial problems, pp. 85–103.

[4] KEAHEY, K., DOERING, K., AND FOSTER, I. From sandbox to
playground: Dynamic virtual environments in the grid. In Proceed-
ings of the 5th International Workshop on Grid Computing (Novem-
ber 2004).

[5] KIRKPATRICK, S., GELATT, C. D., AND VECCHI, M. P. Optimiza-
tion by simulated annealing. Science, Number 4598, 13 May 1983
220, 4598 (1983), 671–680.

[6] LANGE, J. R., SUNDARARAJ, A. I., AND DINDA, P. A. Automatic
dynamic run-time optical network reservations. In Proceedings of

the Fourteenth International Symposium on High Performance Dis-
tributed Computing (HPDC) (July 2005). To appear.

[7] LIN, B., AND DINDA, P. Vsched: Mixing batch and interactive vir-
tual machines using periodic real-time scheduling. Tech. Rep. NWU-
CS-05-06, Department of Computer Science, Northwestern Univer-
sity, April 2005.

[8] MAN, C. L. T., HASEGAWA, G., AND MURATA, M. A merged
inline measurement method for capacity and available bandwidth.
In Passive and Active Measurement Workshop (PAM2005) (2005),
pp. 341–344.

[9] MEDINA, A., LAKHINA, A., MATTA, I., AND BYERS, J. Brite: An
approach to universal topology generation. In Proccedings of Inter-
national Workshop on Modeling, Analysis and Simulation of Com-
puter and Telecommunications Systems (MASCOTS) (August 2001).

[10] PRASAD, R., MURRAY, M., DOVROLIS, C., AND CLAFFY, K.
Bandwidth estimation: Metrics, measurement techniques, and tools.
In IEEE Network (June 2003).

[11] RIBEIRO, V., RIEDI, R. H., BARANIUK, R. G., NAVRATIL, J.,
AND COTTRELL, L. pathChirp:Efficient Available Bandwidth Esti-
mation for Network Paths. In Passive and Active Measurement Work-
shop (PAM2003) (2003).

[12] SHAKKOTTAI, S., BROWNLEE, N., AND KC CLAFFY. A study of
burstiness in tcp flows. In Passive and Active Measurement Workshop
(PAM2005) (2005), pp. 13–26.

[13] SHOYKHET, A., LANGE, J., AND DINDA, P. Virtuoso: A system
for virtual machine marketplaces. Tech. Rep. NWU-CS-04-39, De-
partment of Computer Science, Northwestern University, July 2004.

[14] SUNDARARAJ, A., AND DINDA, P. Towards virtual networks for
virtual machine grid computing. In Proceedings of the 3rd USENIX
Virtual Machine Research And Technology Symposium (VM 2004)
(May 2004). To Appear. Earlier version available as Technical Re-
port NWU-CS-03-27, Department of Computer Science, Northwest-
ern University.

[15] SUNDARARAJ, A., GUPTA, A., , AND DINDA, P. Increasing appli-
cation performance in virtual environments through run-time infer-
ence and adaptation. In Proceedings of the 14th IEEE International
Symposium on High Performance Distributed Computing (HPDC)
(July 2005). To Appear.

[16] SUNDARARAJ, A., GUPTA, A., AND DINDA, P. Dynamic topology
adaptation of virtual networks of virtual machines. In Proceedings of
the Seventh Workshop on Langauges, Compilers and Run-time Sup-
port for Scalable Systems (LCR) (October 2004).

[17] ZANGRILLI, M., AND LOWEKAMP, B. B. Using passive traces of
application traffic in a network monitoring system. In Proceedings of
the Thirteenth IEEE International Symposium on High Performance
Distributed Computing (HPDC 13) (June 2004), IEEE.

[18] ZANGRILLI, M., AND LOWEKAMP, B. B. Applying principles of
active available bandwidth algorithms to passive tcp traces. In Pas-
sive and Active Measurement Workshop (PAM 2005) (March 2005),
LNCS, pp. 333–336.

12

