

Electrical Engineering and Computer Science Department

Technical Report
NWU-EECS-06-08

August 8, 2006

Prospects For Speculative Remote Display

Sam Rossoff Peter Dinda

Abstract

We propose an approach to remote display systems in which the client predicts the screen
update events that the server will send and applies them to the screen immediately, thus
eliminating the network round-trip time and making the system much more responsive in
a wide-area environment. Incorrectly predicted events are undone when the actual events
arrive from the server. The predictability of the events is core to the feasibility of this
approach. Surprisingly, even a very naive predictor is able to correctly predict the next
event 25-45% of the time. This suggests the prospects for speculative remote display are
quite good.

Effort sponsored by the National Science Foundation under Grants ANI-0093221, ANI-0301108, and EIA-
0224449. Any opinions, findings and conclusions or recommendations expressed in this material are those
of the author and do not necessarily reflect the views of the National Science Foundation (NSF).

Keywords: Remote display, windowing systems, user interfaces, prediction

Prospects For Speculative Remote Display

Sam Rossoff Peter Dinda
{s-rossoff,pdinda}@northwestern.edu

Department of Electrical Engineering and Computer Science, Northwestern University

Abstract

We propose an approach to remote display systems
in which the client predicts the screen update events
that the server will send and applies them to the screen
immediately, thus eliminating the network round-trip
time and making the system much more responsive in
a wide-area environment. Incorrectly predicted events
are undone when the actual events arrive from the
server. The predictability of the events is core to the
feasibility of this approach. Surprisingly, even a very
naive predictor is able to correctly predict the next
event 25-45% of the time. This suggests the prospects
for speculative remote display are quite good.

1 Introduction

Remote display systems allow a distant user to con-
trol a computer or application with a graphical user
interface. While this technology dates back to the
1980s and the X Window System [9], it has only re-
cently become widely deployed through the success
of VNC [8] and Microsoft’s inclusion of the Remote
Desktop Protocol (RDP) in the mainstream release of
Windows. Remote display systems are also key com-
ponents in thin-client computing [5, 10], which is see-
ing a resurgence because of the advent of virtual ma-
chines [2, 11].

Increasingly, remote display systems are being used
over wide-area networks where round-trip latencies
are inherently much higher than those in local-area
networks, and have far greater variance [7, 4]. These
higher latencies dramatically reduce the utility of re-
mote display systems for end-users, making the remote
computer seem choppy, slow, and hard to control.

The client and server in a remote display system
communicate through two independent event streams.
User events (keystrokes, mouse movements and clicks,
etc) flow from the client to the server, while screen
events (graphics primitives) flow from the server to
the client. While neither VNC nor RDP require that
the two event streams be synchronized, they are in
fact synchronized through the user who will frequently
wait for the effects of his actions to be shown in his dis-
play. The user is thus subject to the round-trip time of
the network path and perceives the high mean latency
and variance of the path as slowness and jitter in the
display.

We propose the entirely new concept of speculative
remote display as a way of eliminating or alleviating
this problem. The key idea is for the client to predict
future screen events from the history of past screen and
user events and execute these screen updates immedi-
ately. As the actual server-supplied screen events ar-
rive, they are compared against the predicted events
that have already been speculatively executed. If there
is a difference, the client rolls back (undos) the ef-
fects of the erroneously predicted events. In effect, the
client is always executing a nested transaction on the
frame buffer, and the server provides commit and abort
messages. Provided that (1) the event streams are suf-
ficiently predictable, and (2) users are sufficiently tol-
erant of rollbacks, the idea of speculative remote dis-
play has the potential to make wide-area remote dis-
play much more usable.

Figure 1(a) illustrates the structure of an RDP sys-
tem, while Figure 1(b) illustrates the design of our
speculative RDP system. Notice that in this design,
only client changes are made.

In this initial report, we examine the prospects for
speculative remote display by conducting a user study

1

Client Server
Keystrokes, Mouse ops

Bitmaps, Color tables, Blit
ops, Ordering ops, Drawing
ops, etc

Cache

(b) Original RDP

Client Server
Keystrokes, Mouse ops

Speculative ops and parameters

Cache

User
Event
Predictor Screen

Event
Predictor

Compare
Undo Requests,
Bitmaps, Color tables

Undo Log

Bitmaps,
Color
tables,
Blit ops,
Ordering
ops,
Drawing
ops, etc

User Sensitivity

(b) Speculative RDP

Figure 1. System design.

using an instrumented client for Microsoft’s RDP. We
focus on (1), the question of how predictable the event
streams are. Surprisingly, even an extremely naive pre-
dictor has great success in predicting the next event
from previous events, especially for the screen events.
We are working on completing our full speculative
client. With it, we will address question (2) by measur-
ing user tolerance with increasingly aggressive specu-
lation and comparing it to user tolerance without spec-
ulation, both on high latency, high jitter networks.
For that study, we will use the techniques that have
been previously developed for measuring user toler-
ance with resource borrowing [3]. We expect that
the degree of aggressiveness will best be directly con-
trolled by the end-user, a technique that has been pre-
viously used in CPU scheduling [6].

2 Prediction study

A key requirement for speculative remote display is
that there be, in practice, a considerable degree of pre-

dictability in the user and screen event streams. We
want to map from all the user and screen events in the
past to the predicted next screen event and the prob-
ability that it will be correct. In the following, we
demonstrate that even a naive predictor performs sur-
prisingly well at predicting the next user event from
the history of previous user events, and the next screen
event from the history of previous screen events.

2.1 Predictor

Our predictor is a k-th order Markov model. The
symbols that the Markov model operates on are the
user or system events as supplied as human-readable
strings. A typical event contains the type of event (e.g.,
mouse movement) and its parameters (e.g., (x, y) co-
ordinates). A state is defined as the simple concatena-
tion of the last k symbols. Of course, given this simple
scheme, the bound on the state space size of a model
is O(nk+1), where n is the number of distinct input
symbols. Furthermore, because we include parameters
in the symbols, n can potentially be astronomical. For
this reason, our implementation can constrain the num-
ber of states to be between an upper and lower limit,
keeping the most visited states and garbage collecting
the rest when the upper limit is reached.

Our implementation supports continuous model fit-
ting and prediction. That is, it can operate on a stream
of symbols, updating the model on each new symbol
as well as supplying a prediction of the symbol that is
most likely to occur next. If there is insufficient infor-
mation (e.g., we are in a state which currently has no
outgoing arcs), then the predictor does not attempt to
predict the next state.

Initially, our intent was to use Markov models to
predict the type of the next event and discrete parame-
ters with a small range, such as bitmap IDs, relying on
much more compact linear time series models to cap-
ture positional parameters. We were stunned, however,
to find that simply using Markov models as described
above worked surprisingly well. We are continuing to
explore different prediction approaches.

2.2 Traces

To collect trace data to evaluate our predictor, we in-
strumented the rdesktop [1] open source RDP client so

2

that it will non-intrusively record all user and screen
events to files. We then created an experimental
testbed consisting of 2 PCs (P4, 2 GHz, 128 MB, 20”
LCD display, Windows XP) connected via a private
100 mbit network. Notice that this is an ideal remote
desktop configuration—network latency and jitter are
minimized. To collect a trace, the user sat at one PC
and used rdesktop (at 1024x768 resolution and 24 bit
color) to use the other PC. The user performed the fol-
lowing tasks:

• Acclimatization. (5 minutes)

• Word processing with Microsoft Word 2003. The
user spent 15 minutes recreating a supplied docu-
ment.

• Presentation creation with Microsoft Powerpoint
2003. The user spent 15 minutes recreating a
supplied document with considerable drawing re-
quired.

• Web browsing using Microsoft Internet Explorer.
For 15 minutes, the user visited a news web site,
read an article, and then conducted web searches
on its topic in another window. (15 minutes).

• First person shooter game playing for 15 minutes.
The user played Quake II.

Four users participated. They included undergradu-
ates and graduate students in the computer science de-
partment at Northwestern. We are currently working to
extend the range of users. The user traces contain 68
to 112 thousand events, while the screen traces contain
2.5 to 4.4 million events.

2.3 Results

We ran the screen and user traces generated by each
user through our online Markov predictor, varying the
order of the model and the upper and lower limits on
the number of states in the model. For each combi-
nation of trace, order, and limits, the predictor started
with no information at the beginning of the trace and
formed its model progressively as it saw the input sym-
bols. This is identical to how a predictor in a specula-
tive remote display system would operate.

The graphs in Figure 2 show the percentage of pre-
diction attempts that are successful, as a function of the

order of the model. (a)–(c) are for the user traces, with
progressive limitation on the number of states permit-
ted, while (d)–(f) are the screen traces with the same
progressive limitation. Each curve corresponds to a
particular user. The key point is that with an immi-
nently practical 1000–2000 state model ((b) and (e)),
virtually all attempts to predict the next screen event
are successful, while, with a sufficiently high order
model, ∼ 90% of all attempts to predict the next user
event are successful. If we have seen any transitions
out of a state before (i.e., if we have seen the state be-
fore), we almost always predict the next state correctly.

The graphs of Figure 3 correspond exactly to those
of the previous figure with the exception being that we
are plotting the percentage of all events that are suc-
cessfully predicted. That is, it includes those cases
where we have not seen the state before as erroneous
predictions. Remarkably, with our 1000–2000 state
model, we are still able to correctly predict 25-45%
of screen events and 12-14% of the events of most of
our users.

The upshot of Figures 2 and 3 is that we have found
that both screen and user events are surprisingly pre-
dictable with even an extremely naive predictor. As
predictability of these events is a core requirement for
speculative remote display to work, the prospects for
the idea seem bright.

3 Conclusions

We have introduced the idea of a remote display
system that predicts and speculatively executes screen
update events in order to ameliorate the high laten-
cies seen on wide-area networks. The prospects for
this idea are critically dependent on the predictability
of user and (particularly) screen events. Surprisingly,
even a very naive predictor is able to correctly predict
screen events very well. Having found the prospects
for speculative remote display to be very good, we are
now working to implement the system.

References

[1] CHAPMAN, M. rdesktop: A remote desktop proto-
col client for accessing windwos nt terminal server.
http://www.rdesktop.org.

[2] GARFINKEL, T., PFAFF, B., CHOW, J., ROSEN-
BLUM, M., AND BONEH, D. Terra: A virtual

3

(a) user, unlimited states (b) user, 1000-2000 states (c) user, 100-200 states

(d) screen, unlimited states (e) screen, 1000-2000 states (f) screen, 100-200 states

Figure 2. Percentage of prediction attempts that are correct.

(a) user, unlimited states (b) user, 1000-2000 states (c) user, 100-200 states

(d) screen, unlimited states (e) screen, 1000-2000 states (f) screen, 100-200 states

Figure 3. Percentage of all events that are predicted correctly.

4

machine-based platform for trusted computing. In
Proceedings of the 19th ACM symposium on Operat-
ing systems principles SOSP 2003 (2003), pp. 193–
206.

[3] GUPTA, A., LIN, B., AND DINDA, P. A. Measuring
and understanding user comfort with resource borrow-
ing. In Proceedings of the 13th IEEE International
Symposium on High Performance Distributed Com-
puting (HPDC 2004) (June 2004).

[4] KARAM, M., AND TOBAGI, F. A. Analysis of the de-
lay and jitter of voice traffic over the internet. In Pro-
ceedings of IEEE INFOCOM (2001), pp. 824–833.

[5] LAI, A., AND NIEH, J. Limits of wide-area thin-
client computing. In Proceedings of the ACM SIG-
METRICS Conference on Measurement and Modeling
of Computer Systems (2002).

[6] LIN, B., AND DINDA, P. Vsched: Mixing batch and
interactive virtual machines using periodic real-time
scheduling. In Proceedings of ACM/IEEE SC 2005
(Supercomputing) (November 2005).

[7] PAXSON, V. End-to-end routing behavior in the In-
ternet. In Proceedings of the ACM SIGCOMM (New
York, August 1996), ACM Press, pp. 25–38.

[8] RICHARDSON, T., STAFFORD-FRASER, Q., WOOD,
K., AND HOPPER, A. Virtual network comput-
ing. IEEE Internet Computing 2, 1 (January/February
1998).

[9] SCHEIFLER, R. W., AND GETTYS, J. The x window
system. ACM Transactions on Graphics 5, 2 (April
1986).

[10] SCHMIDT, B., LAM, M., AND NORTHCUTT, J. The
interactive performance of slim: A stateless thin client
architecture. In Proceedigns of the 17th ACM Sympo-
sium on Operating Systems Principles (SOSP 1999)
(December 1999), pp. 32–47.

[11] SUNDARARAJ, A., GUPTA, A., , AND DINDA, P.
Increasing application performance in virtual envi-
ronments through run-time inference and adaptation.
In Proceedings of the 14th IEEE International Sym-
posium on High Performance Distributed Computing
(HPDC) (July 2005), pp. 47–58.

5

