
Electrical Engineering and Computer Science Department

Technical Report
NWU-EECS-07-01
March 26, 2007

Blackbox No More:
Reconstruction of Internal Virtual Machine State

Benjamin Prosnitz

Abstract

Virtual Machine Monitors (VMM) provide Virtual Machine
software which runs on them with a virtual hardware interface.
The Virtual Machine's activity is visible to the VMM through
this interface but the VMM sees an amalgamation of the activity
from all programs running within the Virtual Machine. As a
result, it is difficult to partition the activity by program and
understand what is really happening inside the Virtual Machine.
In this paper, I present a mechanism to associate the activity
done within the Virtual Machine with the different programs
and threads running within it. I will show that each process and
thread has certain characteristics visible from the hardware
level to allow for the reconstruction of process and thread
tables. I will then show that by using these reconstructed
tables, system activity can be associated with the threads and
processes which do it.

Keywords: Virtual Machines, monitoring

Blackbox No More: Reconstruction of Internal Virtual Machine State

Benjamin Prosnitz
Department of Electrical Engineering and Computer Science

Northwestern University
b-prosnitz@northwestern.edu

Abstract
Virtual Machine Monitors (VMM) provide Virtual
Machine software which runs on them with a virtual
hardware interface. The Virtual Machine's activity
is visible to the VMM through this interface but the
VMM sees an amalgamation of the activity from all
programs running within the Virtual Machine. As a
result, it is difficult to partition the activity by
program and understand what is really happening
inside the Virtual Machine.
In this paper, I present a mechanism to associate
the activity done within the Virtual Machine with
the different programs and threads running within
it. I will show that each process and thread has
certain characteristics visible from the hardware
level to allow for the reconstruction of process and
thread tables. I will then show that by using these
reconstructed tables, system activity can be
associated with the threads and processes which do
it.

1. Introduction

Virtual Machine Monitors (VMM) emulate a
complete computer hardware environment. Guest
operating system software running within the
Virtual Machines (VM) interfaces with the virtual
hardware environment as if it were a physical one,
using low-level hardware protocols. The low-level
data which is being communicated though these
protocols conveys little immediate information
about the meaning of the data within the guest
operating system. The goal of this paper is to take
a step in the direction of building meaning from
these interactions.

Inside of the virtual machine, a modern
multiprogrammed operating system switches
between many computational tasks usually referred
to as processes and threads. The tasks each work
with their own resources.

On the hardware level, these tasks are not
immediately visible. The hardware sees a blur of
the activity caused by every one of the tasks. In this
paper, I recreate the set of tasks that are running

and division the activity done into the tasks that are
performing it.

The implications are large. The traditional
design of many applications revolves around the
division of tasks. If this state can be derived from
the low level hardware operations, these
applications may be able to function outside of
virtual machines.

Intrusion Detection Systems (IDS) are a
particularly important application. The more
information that these systems have, the more
effectively they are able to detect intrusions. If
intrusion detection systems run within the
operating system they are trying to protect, they
must proactively stop the intrusions before the IDS
itself is disabled by them. As a result, the IDS
frequently is deployed on the network where it is
more resistant to attack but is not able to defend as
effectively against intrusions as when running on
the user's machine because it does not have as
much information available to it.

Garfinkel [12] proposed the idea of running the
user's operating system within a virtual machine
and running the intrusion detection system outside
of it. With this method, the intrusion detection
system will likely be less vulnerable than when
running within the user's operating system but will
have more state accessable to it. In this paper, I
describe a method of reconstructing this state from
outside the virtual machine which is applicable to
this form of intrusion detection.

The remainder of paper is organized as follows.
In section 2 I give background on the technologies
used in my work. In section 3, I give an overview of
my goals, the challenges associated with them and
the approaches that I take to solve them. In
section 4, I discuss related work. In sections 5-7, I
describe and analyze my implementation. In
section 8, I present future venues for the work and
conclude the paper.

2. Background

In this section, I present background information
on the technologies used in my work: Virtual

Machine Monitors, Intel VT-x, the Kernel-Based
Virtual Machine, and EM64T / AMD64. I also
present an overview of how system calls and
interrupts are handled on modern computer
architectures. In later sections, I describe how my
implementation makes use of these technologies as
well as decribe adaptations of my implementation to
use different technologies.

2.1. Virtual Machine Monitors

Virtual Machine Monitors are pieces of software
which present the software running on them with
an interface that resembles physical hardware.
Operating System software, which traditionally runs
on the physical hardware itself, can then interface
with this virtual hardware layer as a “guest OS”.
One challenge in virtualization is presenting the
guest OS with a believable and functional virtual
hardware interface.

Virtual Machine Monitors vary in implementation
based on the hardware they run on, but many share
similar techniques. Many VMMs operate by
executing all guest instructions in user mode.
When privileged instructions are reached, they trap
into the VMM and the VMM emulates the effect of
instruction execution. In order for this technique to
work all sensitive instructions, as defined by Popek
and Goldberg [2], must trap. If this is the case, the
architecture is considered virtualizable.

The x86 architecture has historically not been
virtualizable [3]. There are a number of sensitive
instructions for the architecture that do not trap.

There are other common problems that span
architectures which make efficient processor
virtualization difficult. Since privileged instructions
trap, manipulation of guest operating system state
can be very inefficient. This problem is called Ring
Compression. Another issue is called Address-
Space Compression, where the VMM takes up some
of the guest OS's linear address space.

2.2. Intel Virtualization Technology - VT-x

Intel developed its VT-x virtualization technology
[1] to address the problems associated with running
virtual machines on the x86 architecture, ease
development of VMMs and increase performance.

VT-x adds two new execution modes to the
processor: VMX root mode and VMX non-root mode.
The VMM runs in VMX root mode. It populates the
Virtual Machine Control Structure (VMCS), which
contains guest state when the processor is in root
mode and host state when the processor is in non-
root mode. In order to run a virtual machine and

load guest state, the VMM performs a VM entry.
Likewise, to return to the VMM a #VMEXIT occurs
which reloads the host state.

The separation of host and guest state solves a
number of problems that arise with x86
virtualization. Ring Compression is no longer an
issue, as the guest can run in ring 0. When a VM
entry occurs, the linear-address space changes so
Addres-Space Compression does not occur.

With VT-x the guest OS can usually run without
intervention from the VMM. There are some cases,
however, where the VMM needs to intervene.
These include handling page faults, I/O, exceptions
and some interrupts. When these events occur, the
processor performs a VM exit and makes the VMM
handle it. The VMM has some control over which
events cause VM exits and can specify these options
in the VMCS.

2.3. Kernel-Based Virtual Machine

The Kernel-based Virtual Machine (KVM) [6,7] is
a combination of a linux kernel-mode virtualization
driver and a modified QEMU userspace program
that interfaces with the driver. When a virtual
machine is to be started, the modified QEMU
portion allocates the guest OS memory image, uses
ioctl to request that the driver create the
architecture-specific portion of the state, and
finally runs the virtual machine through the driver.
The virtual machine is scheduled as the modified
QEMU process. Because of this, the virtual
machine can be stopped through normal unix
commands like kill.

When a VM exit occurs in a KVM Virtual
Machine, it is dispatched to kernel-mode handlers
which either try to perform the needed action
directly in the kernel or return to userspace
handlers. In KVM, I/O and CPUID events are
handled in user-space while other events are
managed in kernel-mode.

KVM currently supports one virtual processor
per guest VM. KVM initially required hardware
virtualization support like VT-x and AMD's Secure
Virtual Machine (SVM) technology [8], but it now
supports a paravirtualized architecture [10] as well.

2.4. System Call and Interrupt Handlers

System calls and interrupts are handled in a
similar manner on most modern computer
architectures. In order to prepare the system to
handle the interrupt or system call, the operating
system specifies the address of the handler in an

area of memory that is easily locatable by the
processor. When a system call instruction or
interrupt occurs, the processor switches to kernel-
mode and begins executing instructions at the
specified handler's address. On the x86
architecture, there is a different handler for each
interrupt but there is typically only one handler that
is used for system calls.

2.5. EM64T / AMD64 Architecture

Intel's EM64T [19,20,22,23] technology is a set
of extensions to the x86 architecture for 64-bit
integer computation and extended addressing.
EM64T is based off of AMD's AMD64 technology
[8,9] so the description is applicable to both.

In order to simplify the development of AMD64-
dependent operating systems, AMD decided to
remove architectural support for a number of x86
processor technologies..

EM64T/AMD64 introduces a long-mode to the
processor which supports the use of 48-bit virtual
addressing as well as new 64-bit general purpose
registers. In long-mode, segmentation is disabled
and a flat 48-bit virtual address space is mapped
only through paging mechanisms to a 52-bit
physical address space.

In addition, system calls made with
SYSENTER/SYSEXIT instructions are no longer
allowed and only SYSCALL/SYSRET instructions
can be used for fast system calls. The processor
setup for both SYSENTER and SYSCALL
instructions is similar. The Operating System set an
entry point Model-Specific Register (MSR) on the
processor corresponding with the system call
instruction to point to the system call handler
location.

3. Overview

My goal is to associate activity visible to the
VMM with the processes and threads which cause
or respond to it. The hardware activity that I focus
on is I/O activity. In addition, I associate system
calls with the processes and threads which
complete them.

In order to track activity of individual processes
and threads, tables of the active processes and
threads need to be constructed. I will show in
section 5 that there are hardware signatures that
can be used to identify the individual threads and
processes. Once the threads and processes can be
identified, reconstructing these tables is
straightforward.

Using the signature of the thread and process

that are active, I/O and system call activity can be
associated with them so long as the activity itself is
visible to the VMM. KVM already handles I/O
activity for the guest OS so no changes are needed
to intercept it. Intercepting system calls is more of
a challenge.

When system calls occur in the guest VM, the are
routed through handlers in the guest kernel. The
location of the handlers is stored as part of the
processor state. As a result, either the location or
the handler itself can be modified to jump into the
VMM, from which I can associate the call with the
running thread and process.

4. Related Work

Internal virtual machine state has been collected
before through other mechanisms.

Garfinkel [15] used Mission Critical's crash tool
[16] to examine the memory state of the virtual
machine and parse kernel structures from it. My
work differs as it does not rely on knowledge of a
particular operating system type and version, with
the exception of using system call calling
conventions. My version also does not attempt to
interpret guest OS state from its memory image.

SimOS [17,18] takes advantage of the wide
range of control offered by simulation platforms to
construct state. It active process information is
collected by triggering the execution of a collection
script whenever a hardware context switch occurs
or when code gets executed in the operating system
scheduler. The scripts are dependent on the
operating system. The methods SimOS share
similarities with mine because both trigger the
execution of data collection code when low-level
events occur.

5. Implementation Details

In this section, I describe the methods that I use
to construct process and thread tables and
associate I/O and system calls with the processes
and threads that are involved with them. In section
6, I will critique and analyse these methods and
offer alternatives. Source code can be made
available upon request.

5.1. Process Identification

I take advantage of the fact that each process
runs in its own virtual memory space. On the
EM64T architecture, a virtual memory space is
defined solely by page tables. When processes
switch, the virtual memory space and therefore the

active page table needs to switch as well. This
switch is usually done by changing a pointer to the
head of the active page table which is stored in a
processor register.

On x86 processors the register which points to
the head of the page table is the cr3 register. Since
the location pointed to by the cr3 is unique to each
process, the value stored in the cr3 can be used as
a process identifier.

As will be described further in section 6, a VM
EXIT can be forced to occur whenever a switch to
kernel mode occurs within the virtual machine.
When the VM EXIT occurs, the last value of the cr3
– representing the process that was executing – is
recorded and previous actions are associated with
that process.

5.2. Thread Identification

For a given process, any number of threads could
be executing. Like processes, each active thread
has a unique characteristic which can be used as a
thread identifier. In this case the identifier is the
location of the bottom of the current stack in the
process virtual memory space.

Two assumptions are made in the current
implementation. When a new thread execution is
detected, it is assumed that the stack pointer points
to a location on the bottom page of the stack. In
addition, it is assumed that threads do not use more
than two pages of memory for their stack. A more
sophisticated implementation which does not have
these issues is planned for a future revision.

5.3. Interception of Exceptions and
Interrupts

One point of transfer to the kernel, where
process and thread switches may occur, is exception
and interrupt handling. VM EXITs can occur for
exceptions, depending on the configuration of VT-x
in the VMCS. By default in KVM only page faults,
non-maskable interrupts (NMI) and external
interrupts cause VM EXITS. In this implementation,
all possible exceptions and interrupts cause
VMEXITS except for the #NM “Device Not
Available” exception which is used to enable the
floating point coprocessor.

5.4. Interception of System Calls

Fast system call instructions (SYSCALL/SYSRET)
do not naturally perform VMEXITs when they occur
with VT-x. In order to force VMEXITs when these
instructions occur, a VMCALL instruction is injected

as the first instruction in the system call entry point.
The operating system is required to do most post-
SYSCALL setup operations manunally. Since the
VMCALL is the first instruction executed, most
guest state before the call is maintained and can be
interpreted as process and thread identifiers,
system call numbers and arguments. The format of
system call numbers and arguments is operating
system dependent. In order to demonstrate that the
system call functionality in my implementation
works, I read the system call number using the 64-
bit Linux convention [21] of storing it in the RAX
register. The system call is then associated with the
active process and thread.

5.5. I/O Monitoring

I/O operations are already managed through
KVM in userspace. My logging code runs in kernel
space so I use ioctl to send data to the driver. The
driver logs the last I/O completed for each thread.

5.6. Collection and Logging of Data

Data is stored in two levels of tables. One of the
tables is the process table. For each process entry
there is a table of the process's threads. Each
thread and process has a field storing the number
of the last system call which was made and the last
byte of I/O which occurred. More detailed system
call and I/O information can be logged easily if
necessary.

5.7. Client Application

I constructed a client program which queries
information from the KVM driver. The number of
processes and the list of processes can be outputted
through a command. There are also commands
querying information about the processes and their
threads. For processes, there are commands to do
the following: print the number of threads used in
the process, list the threads, output the number of
the last system call made and output the last byte of
I/O completed. For threads, there are commands to
print the last byte of I/O completed and the last
system call made.

6. Analysis of Implementation

In the following subsections, I discuss, critique
and analyze the effectiveness of my implementation.
The performance analysis is in section 7.

6.1. Reconstruction of Process and Thread
Tables

The methods used to detect both processes and
threads rely on memory addressing. In both
situations, the data could move in memory, resulting
in two entries for the same object. I have not yet
resolved this situation. A thread or process could
also stop executing and a different thread or
process could use the same resources, conflicting
with the old identifier. Because of this, it is useful
to detect the death of threads and processes.

One method that I tried for detecting the death of
threads and processes was Declared Death, the use
of system call information. Of course, this method
requires knowledge of the guest OS's system calls
and calling conventions. On Linux guests, I
monitored exit() and exit_group() calls. exit() and
exit_group() calls are frequently used to tell the
operating system to terminate a process. They can
be embeded in code and are sometimes
automatically appended to the end of the main()
function by compilers.

 The exit() and exit_group() call monitoring
reduced the number of processes and threads
active reported by my software, but the number of
processes and threads active was still about ten
times higher than that reported by the guest
Operating System. This could mean one of two
things. Either the use of the cr3 as a process
identifier is an inaccurate one, or that processes die
through another mechanism.

I also experimented with the use of an expiration
time for each thread and process. I call this method
Expiration. With Expiration, the last time of thread
activity is logged and a thread is declared to be
dead when it has not been active within the past
few seconds. A problem with Expiration is that
threads may block on a synchronization object for
long periods of time and appear dead. With a
process death time of 5 seconds, the process count
reported by my software was very close (usually no
more than 2 away with a total count of about 37) to
that reported within the virtual machine but also
very volatile and sometimes was higher than the
number of processes reported within the virtual
machine.

One source of additional process listings could be
kernel drivers. Kernel drivers have their own virtual
memory space for mapping high memory physical
addresses which may show up as processes through
my software. I changed the code to check if the
current processor ring is kernel mode when a trap
occurs and is to be logged. If it is in kernel mode,

the logging does not occur. This change did not
solve the problem entirely.

Another possible source are intermediate
processes, used to complete work for another a
process. On a Linux guest, it is difficult to test
whether this is this cause of the extra process
listings accurately.

The reported process count by my software did
increase as more applications were being used and
decrease when the system was idle.

One idea I originally considered for tracking the
executing thread was using the location of the
program counter when a thread enters and leaves
the system as a temporary thread identifier. For
example, when a thread enters the kernel, the last
user-mode program counter location would be
stored as the thread identifier. When the operating
system re-enters user-mode, the starting user-mode
program counter location would be used to look up
the appropriate thread information.

This has a number of problems. First, multiple
threads within a process may be interrupted at the
same instruction. This is particularly a problem if
multiple threads are started at approximately the
same time in a process with the same entry point.
There is a chance that they will be interrupted by a
timer at the same point. Second, a VMEXIT needs to
be performed when the thread resumes execution in
user mode in order to record the program counter.
This can be done in a number of ways. All of the
ways I evaluated have accuracy problems with
ensuring that a VMEXIT only occurs when the
kernel returns to user mode. Also, the additional
VMEXIT for this user mode entry decreases the
speed of execution.

6.2. Interception of System Calls

I originally planned to implement system call
monitoring by injecting a new system call handler
into the guest OS's virtual memory. I will refer to
this method as Additional Handler Injection. When
a system call occurs, the processor would begin
executing instructions in the new handler. This new
handler would perform a VMCALL and then jump
into the guest OS's default handler. Additional
Handler Injection could support many guest OS's
with minimal interference. The problem is the
complication of finding a location in memory to put
the handler into, setting up page tables and
ensuring that guest memory management doesn't
conflict with the mapping.

In order to simplify my implementation, I avoided
this method. My original workaround was
admittedly not very good. With Double Instruction

Swap, two VMCALLs were performed and the guest
OS's default handler was modified frequently. At
first, a VMCALL instruction was inserted into the
beginning of guest OS's default handler,
overwritting 3 bytes previously in the handler The
replaced bytes were saved. After the VMCALL
occured, the VMCALL instruction was replaced by
the original 3 bytes and another VMCALL
instruction was placed below them. After this
second VMCALL occured, a VMCALL instruction
was inserted in the first location and the second
VMCALL was replaced by the bytes that were
originally there.

This implementation makes two assumptions.
First, it assumes that the initial instructions after a
system call will be setup instructions which do not
branch. Second, it assumes that an instruction
doesn't span across both the third and fourth byte
of the handler. In addition, this implementation
performs two VMEXITs and with them, additional
overhead.

Because of these problems, I changed my
implementation to take advantage of another
observation of guest OS code – that there are
frequently gaps between function bodies in memory.
Before the system call handler of my Fedora Core 6
guest, there is a gap large enough to fit the vmcall
instruction. With Fill the Gap, a VMCALL
instruction is inserted in the gap and the SYSCALL
MSR is set accordingly.

When a system call is performed, the processor
begins executing instructions 3 bytes above the
guest OS's default handler location, where a
VMCALL instruction is located. When the VMCALL
returns, the remainder of the handler's instructions
are executed normally. Performance improved
slightly with Fill the Gap over Double Instruction
Swap, as will be shown in section 7.

For an implementation that supports many
different guest OS's, Additional Handler Injection
would be most appropriate. This would likely have
similar performance characteristics as Fill the Gap,
which performs just one VMCALL. There would be
additional overhead, though, as a result of
managing page tables to support the handler.

Changes made to the kernel handler are
detectable by a scan through the kernel memory
which an antivirus program might perform.
Injecting a custom handler in a separate page is
less detectable, because MSR reads can be
emulated.

An alternative method is to set the permissions
on the guest OS's normal handler's page to trap on
accesses. This method would incur a lot of
overhead, because there is likely a lot of kernel

code on the page and all of it would need to be
emulated.

A clever process might take advantage of the fact
that only the fast system call handler has been
modified and could make calls through interrupts.
User-specified interrupts can't directly be set to
perform VMEXITs with VT-x, but the interrupt
handler can be modified in the same way as the fast
system call handler to perform a VMCALL.

6.3. Interception of Exceptions and
Interrupts

In order to monitor a full range of guest OS
transitions into kernel mode, I modified KVM so
that the VM performs VMEXITS for all the
interrupts that VT-x can perform VMEXITS for,
except #NM. These interrupts include breakpoints,
general protection faults and other fixed hardware
interrupts but not user defined interrupts. As will
be shown in section 7, performance is harmed when
VMEXITS are performed for these additional
interrupts.

6.4. I/O Monitoring

The same information used to associate system
calls with the process and thread which is running
could be used for some I/O. One problem occurs
with I/O which is completed by the kernel. A
different stack would be used by the kernel.
Depending on the cause of the I/O (external
interrupt from device, system call, etc.) it may be
possible to associate it with a process or thread.
A simple way to do this is to associate the I/O with
the thread and process that runs just after it occurs.

This is the approach that is taken in my
implementation. When I/O occurs, information
about the I/O which occured is saved. When the
next interrupt or system call occurs, the thread that
was running is determined and the saved I/O
information is associated with it.

A problem with this approach is that if it is input
I/O, the operating system might not immediately
handle it and the thread and process that executes
afterward may not be involved with it.

My I/O logging implementation performs extra
context switches using ioctl because the logging
code is inside of the kernel driver and the I/O is
handled in user mode. Because most of the
overhead in doing the logging is implementation
specific (the ioctl call used), I won't perform a
performance evaluation of the I/O logging overhead.

6.5. Adaptation for traditional x86
Processors

My implementation takes advantage of the
properties of newer 64-bit x86 processors with 64-
bit operating systems for simplicity. Similar
techniques can be applied to traditional x86
processors.

One EM64T feature I took advantage of was the
imposed requirement on 64-bit operating systems to
use a flat-address model, without segmentation
having any effect. With a flat-address model, all
reasonable methods to switch virtual memory
spaces involve simply modifying a pointer to the
head of the page table so these changes can be
interpreted as process switches.

Even without this model, some change to at least
one table referencing the part of the physical
memory being accessed must occur during a
process switch. Because of this, an efficient
operating system would swap either the active page
table, the active segments or both. The VMM could
examine both the page table location and the
segment configuration to come up with an identifier
for the process. This could be as simple as an array
of the relevant segment and page data or a
cryptographic hash of it.

Thread identification methods are also affected
when a 64-bit operating system isn't used. The
stack segment is likely changed instead of the
virtual address of the stack. The stack segment
information can then be used as a thread identifier
instead of the stack location itself.

In 64-bit long mode, software must perform
system calls through SYSCALL instructions. 32-bit
software typically uses SYSENTER instructions
instead but has a number of avenues through which
it can perform system calls. In order to support
this, similar changes can be made. 32-bit SYSCALL
and SYSENTER instructions both set MSRs with the
call handler location. The handler can be modified
with the same method as for the 64-bit SYSCALL
instructions. Call gates are rarely used but if
necessary a VMCALL could be inserted at the entry
point of every one.

7. Performance Evaluation

In this section I provide quantitative data
generated from benchmarks run on my test system.
In the first subsection, I analyze the KVM's
performance without any modifications. In the two
subsequent subsections, the performance changes
due to my modifications are analyzed.

The system configuration is the same across all
tests. The system is a 2.00 ghz T7200 Intel Core 2
Duo dual core machine with 2 GB of memory and a
Nvidia Quadro NVS 120M graphics chip. The kvm
module allocates 1 GB of the memory. The host OS
is Debian Etch 4.0 amd64 “Testing” with a modified
kvm-12 kernel module running with a Debian
2.6.18-3 kernel. The guest OS is Fedora Core 6
x86_64.

The primary performance benchmark I used was
unixbench. Unixbench [16] is a comprehensive
benchmark which performs the following tests
multiple times each: Dhrystone 2 [17] using
Register Variables, Double-Precision Whetstone
[18], execl() Throughput, File Copying, Pipe
Throughput, Process Creation, Shell Scripts and
System Call Overhead. All benchmarked results
will be normalized. The File Copy benchmark has
units of amount of data per second and the other
benchmarks have units of operations per second.
For all the benchmarks, higher is better.

7.1. KVM Performance

Before evaluating the impact of my modifications,
it is important to first evaluate the performance of
KVM itself. In the charts that follow, the baseline
“No KVM” represents the results of the test being
run on my System without using virtualization.
“KVM” represents the results of the test being run
inside KVM on the same system.

First, I evaluated KVM's numerical computation
performance using the Dhrystone integer
performance benchmark and the Whetstone floating
point performance benchmark. The normalized
results are shown below.

KVM had about 23% the integer performance of
that without KVM and approximately the same

Dhrystone 2: DP Whetstone:

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Numerical Performance of KVM

No KVM

KVM

floating point performance both with and without
KVM.

Next, I will evaluate the performance
degradation for system tasks due to KVM. The tests
performed were the File Copy, Pipe Throughput,
Process Creation, Shell Script and System Call
benchmarks. The results presented below are
normalized.

All tests show a large amount of performance
degradation. The file copy, pipe throughput and
system call tests resulted in 15-25% of the
performance seen running on the system without
KVM.

KVM performed very poorly with these
benchmarks. Previous results [11] showed that it
performed similarly but slightly worse than Xen.

7.2. System Call Performance

I assessed the performance of system calls on the
system, using the standard trunk build of kvm, and
three modified versions of kvm. The modified
versions are as follows. The first (2VMCALLnolog)
is the version that performs two VMCALLs as
described in section IV (Double Instruction Swap),
but does not call my code which logs the process
and thread information. The second version
(2VMCALLlog) is identical to the first but now logs
process and thread information. The third
(1VMCALLnolog) is my newer version (Fill the Gap),
described in section 6 which performs one system
call but does not log. All three modified versions
have only been modified in the way they handle
system calls.

First I will compare all of these systems using the
System Call Overhead, Shell Script and Pipe
Throughput benchmarks. The following chart uses
normalized data from these benchmarks.

There is a large drop in performance in all three
tests when using KVM versus the performance seen
when running on the host operating system. In
addition, there is another large performance
decrease when system calls are monitored for both
the System Call Overhead and Pipe Throughput
benchmarks .

In order to better examine the affect of logging
and of the change to a single VMCALL on
performance I present Pipe Throughput and System
Call Overhead results for the three modified
versions of kvm in their own chart. This chart is
shown below.

As can be seen in the chart, logging incurs a
small 5% overhead. Reducing the number of
VMCALLs increased performance by 2-15%.

7.3. Performance of Performing Logging
when Exceptions and Interrupts Occur

For these tests, I used four versions of KVM.
“Trunk” is the regular kvm-12 with default
exceptions enabled and no logging. “ExcpRegLog”

File
Copy

Pipe TP Process
Create

Shell
Script

SysCall

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

KVM Performance for System Tasks

No KVM

KVM

System Call
Overhead

Pipe
Throughput

Shell
Scripts

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Effect of System Call VMCALLs on Performance

Outside

Trunk

2VMCALLnolog

2VMCALLlog

1VMCALLnolog

System Call
Overhead

Pipe Throughput

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

Effect of System Call VMCALLs
on System Access Performance

2VMCALLnolog

2VMCALLlog

1VMCALLnolog

is like the “Trunk” version, but has logging enabled.
I also created two versions which use a larger
number of exceptions. These versions are identical
in every respect, except one performs logging and
one doesn't. “ExcpFullNL” is the version which does
not log while “ExcpFullLog” does. All of these
versions of KVM are only modified in how they
handle exception and interrupts..

In the first test, I evaluate file copying
performance. I use results from three file copying
tests with varying buffer sizes of 256, 1024, and
4096 bytes. The results are provided below,
normalized to the “Trunk” version's results.

Even when no additional exceptions and
interrupts are caught, logging has a non-negligible
impact of file copying performance. Performance is
then 60-65% of that without it with 256 and 1024
byte buffers. With a 4096 byte buffer, the
performance difference is minimal.

Catching a larger number of exceptions reduces
performance to 20-25% of what it is otherwise, with
256 and 1024 byte buffers. Enabling logging
results in a 10-20% decrease in performance with
256 and 1024 byte buffers.

With a 4096 byte buffer, performance is even
lower. Performance is then about 12-13% of that
without the additional exceptions.

Next, I evaluated system performance with the
same four versions of KVM. I used the Pipe
Throughput, Process Creation and System Call
benchmarks. The normalized results are on the
next page

An increase in the number of exceptions caught
reduced the pipe throughput significantly. The
impact of enabling logging was less significant.
With the additional exceptions, logging decreased
the throughput by less than 5%. When using the
additional exceptions, performanced drop to 40% of

that seen otherwise. Enabling logging again
caused a less than 5% drop in performance over the
similar version without logging.

Process creation performance was also impacted.
Enabling logging with the default set of exceptions
decreased performance to about 2/3 of that
otherwise seen. When the number of caught
exceptions is increased, performance is about 1/3 of
that otherwise. When logging is then enabled, ¾ of
the process creation performance of ExcpFullNL is
experienced.

System call performance is also severely
impacted. When logging is enabled with default
exceptions, performance is about 20% of that
without logging. When the number of caught
exceptions is increased, performance is about 8% of
that of the trunk, both with and without logging.

8. Conclusion and Future Directions

I presented a system that could reconstruct
process and thread information from low level data
and associate I/O and system calls with those
processes and threads. The process and thread
information was reconstructed in a manner
independent of the running operating system. I/O
and system call information is accessable the same
independent way, but can only be interpreted with
knowledge of the operating system's conventions.

While I succeeded in building a system to
construct this data, the performance impact of its
use is significant. Coupled with the overhead
already caused by virtualization, the slowdown
reduces the usefulness of the system.

Despite this, the ability to divide system activity
into the work of individual processes and threads
may help make sense of the activity. Once data

256 byte
buffer

1024 byte
buffer

4096 byte
buffer

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Impact of Number of Exceptions and
Logging on File Copy Performance

Trunk

ExcpRegLog
ExcpFullNL

ExcpFullLog

Pipe
Throughput

Process
Creation

System Call

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Impact of Number of Exceptions
and Logging on System Performance

Trunk

ExcpRegLog

ExcpFullNL
ExcpFullLog

streams within the virtual machine can be isolated,
the data itself may be interpreted more simply.

Applications which work with process and
threads as objects may be able to move outside of a
virtual machine and experience the benefits of
doing so. They will be able to find and access the
process's memory easily.

The performance degradation due to this system
is significant but the benefits of its use are as well.
As a result, these methods may still find some use.

9. Acknowledgment

I am grateful for Dr. Peter Dinda's advice,
guidance and support for this work.

10. References

[1] G. Neiger, et al. Intel Virtualization Technology:
Hardware Support for Efficient Processor
Virtualization. Intel Technology Journal, Volume 10
Number 3. (August 2006), 167-178.

[2] G. Popek, R. Goldberg, Formal Requirements for
Virtualizable Third Generation Architectures.
Communications of the ACM (July 1974), 413-421.

[3] J. Robin, C. Irvine. Analysis of the Intel Pentium's
Ability to Support a Secure Virtual Machine
Monitor. In Proceedings of the 9th USENIX Security
Symposium (August 2000).

[4] Avi Kivity, et al. KVM: Kernel-based Virtual
Machine for Linux. URL
http://kvm.qumranet.com accessed March
2007.

[5] Avi Kivity, et al. KVM: Kernel-based
Virtualization Driver. URL
http://www.qumranet.com/wp/kvm_wp.pdf accessed
March 2007.

[6] F. Bellard. QEMU: Open Source Processor
Emulator. URL
http://fabrice.bellard.free.fr/qemu/ accessed
March 2007.

[7] F. Bellard. QEMU, a Fast and Portable Dynamic
Translator. In Proceedings of the 2005 Annual
USENIX Technical Conference (April 2005). pp 41-
46.

[8] AMD64 Architecture Programmer's Manual
Volume 2: System Programming. Sunnyvale, CA.,
2006.

[9] AMD64 Architecture Programmer's Manual
Volume 3: General Purpose and System
Instructions. Sunnyvale, CA., 2006.

[10] Barham, et al. Xen and the Art of Virtualization.
In Proceedings of the 19th ACM Symposium on
Operating System Principles (Oct 2003, Boston
Landing, NY). pp 164-177.

[11] Michael Larabel.
http://www.phoronix.com/scan.php?page=article&it
em=623&num=3

[12] T. Garfinkel, M. Rosenblum. A Virtual Machine
Introspection Based Architecture for Intrusion
Detection. In The Proceedings of the 2003 Network
and Distributed System Security
Symposium (Febuary 2003, San Diego, CA.)

[13] Crash Core Analysis Suite. URL
http://www.missioncriticallinux.com/projects/crash/
accessed March 2007.

[14] Rosenblum, et al. Using the SimOS Machine
Simulator to Study Complex Systems. ACM
Transactions on Modelling and Computer
Simulation, Volume 7, Number 1 (January 1997),
78-103.

[15] S. Herrod. Using Complete Machine
Simulation to Understand Computer System
Behavior. Stanford, CA., 1998.

[16] Unixbench. URL
http://www.tux.org/pub/tux/niemi/unixbench/
accessed March 2007.

[17] R. Weicker. Dhrystone. 1984. URL
http://www.netlib.org/benchmark/dhry-c accessed
March 2007.

[18] Whetstone. National Physics Laboratory, 1972.
URL http://www.netlib.org/benchmark/whetstone.c
accessed March 2007.

[19] Intel 64 and IA-32 Architectures Software
Developer's Manual Volume 2A: Instruction Set
Reference A-M. Santa Clara, CA.

http://kvm.qumranet.com/
http://www.netlib.org/benchmark/whetstone.c
http://www.netlib.org/benchmark/dhry-c
http://www.tux.org/pub/tux/niemi/unixbench/
http://www.missioncriticallinux.com/projects/crash/
http://www.phoronix.com/scan.php?page=article&item=623&num=3
http://www.phoronix.com/scan.php?page=article&item=623&num=3
http://kvm.qumranet.com/
http://www.qumranet.com/wp/kvm_wp.pdf

[20] Intel 64 and IA-32 Architectures Software
Developer's Manual Volume 2B Instruction Set
Reference N-Z. Santa Clara, CA.

[21] Linux kernel 1.6.18. URL
http://www.kernel.org accessed March 2007.

[22] Intel 64 and IA-32 Architectures Software
Developer's Manual Volume 3A: System
Programming Guide. Santa Clara, CA.

[23] Intel 64 and IA-32 Architectures Software
Developer's Manual Volume 3B: System
Programming Guide. Santa Clara, CA.

http://www.kernel.org/

	Electrical Engineering and Computer Science Department
	Technical Report
	NWU-EECS-07-01
	March 26, 2007
	Abstract

