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Abstract— We are developing a distributed computing system,
Virtuoso, which presents virtual machines (VMs) as its funda-
mental abstraction to end users. Long-running noninteractive
VMs may coexist on the same host used to support VMs being
used by highly interactive users. We must simultaneously provide
high average computation rates to the non-interactive VMs while
keeping the users of the interactive VMs happy. We report here
an initial work on using direct user feedback to achieve this
balance. The user is provided with a (physical or logical) button
that can be pressed when he feels his machine is responding
inadequately. In response, the scheduler boosts the priority of
his VMs relative to the other VMs in the system. The priority
then declines with time. The goal of the control algorithm driven
by this mechanism is to maintain a targeted average time between
button presses while simultaneously delivering a high compute
rate to the other VMs.

I. INTRODUCTION

Virtual machines (VMs) can dramatically simplify the use
of distributed resources to run diverse applications with high
performance because they provide a low level of abstraction
that is conducive both to providers of resources and their
users. VMs allow dynamic multiplexing of users onto physical
resources at the granularity of a single user per operating
system session, thereby supporting per-user VM configuration
and isolation from other users sharing the same physical
resource. For distributed computing, VMS have advantages
in software security, customization, resource control, site-
independence and many other aspects. We have described
the complete case for wide-area distributed computing using
virtual machines in a previous paper [5]. We are now building
a system, Virtuoso, for distributed computing on VMs that has
the following model:

• The user receives what appears to be a new computer
or computers on his network at very low cost. The user
can install, use, and customize the operating system,
environment, and applications with full administrative
control.

• The user chooses where to execute the virtual ma-
chines. Checkpointing and migration is handled effi-
ciently through Virtuoso. The user can delegate these
decisions to the system.
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• A service provider need only install the VM management
software to support a diverse set of users and applications.

• Monitoring, adaptation, resource reservation, and other
services are retrofitted to existing applications at the
VM level with no modification of the application code,
resulting in broad application of these technologies with
minimal application programmer involvement.

We currently use VMWare GSX Server [19] as our virtual
machine monitor (VMM). Our interface is web-based and
emulates the site of a hardware vendor such as Dell or
IBM [15]. An important element of our system is layer 2 vir-
tual network, VNET, which creates the “networking illusion”
needed for the first element of the model and which we are
now extending to be the basis of the fourth element of the
model [18], [7]. Connectivity to a VM’s console is provided
using a VNC applet embedded in a web page. From there, the
user can bootstrap to direct connectivity using any protocol
supported by the OS (SSH [16], X [21], and Windows Remote
Desktop [13], for example).

A resource provider can have a host participate in Virtuoso
by registering with the front end of the system and running
the Virtuoso software on the host. The front end can then start
new VMs on or migrate existing VMs to the host.

While a VM can support a very wide range of applications,
we particularly want to be able to gracefully handle long-
running non-interactive applications, such as scientific simu-
lations, parallel programs, and grid computing applications, as
well as interactive applications, such as desktop productivity
applications and games. VMs running noninteractive applica-
tions and VMs running interactive applications may have to
coexist on the same host machine. How can we schedule or
control the interactive VMs so that their users remain happy
while not over-penalizing the noninteractive VMs?

In ongoing work [9], we have been studying the tolerance of
the interactive user for contention for CPU, memory, and disk
resources. At the present time, we have completed a controlled
user study on this topic, and are running an Internet-wide user
study that is open to all.1 For these studies, we have developed
the Understanding User Comfort System (UUCS), a Windows
client/server system that executes carefully controlled resource
borrowing according to a profile and accepts user feedback
as it is doing so. The feedback mechanism is a physical or

1Consult http://comfort.cs.northwestern.edu for more information.



logical button that the user presses to express discomfort. In
response, the system immediately halts its borrowing and waits
for a controlled period of time before trying a new profile. One
of the purposes for characterizing user tolerance to resource
borrowing is to inform the scheduling of interactive and non-
interactive VMs.

User comfort with resource borrowing is highly dependent
on the applications being used. Because of this complexity,
determining the exact single scheduling goal for an interactive
VM in a particular context is challenging. In response, we are
exploring using direct user feedback in the scheduling process.
This paper presents our initial results in applying direct user
feedback, specifically the use of a “discomfort button” similar
to that used in our user comfort work, to control the CPU use
of interactive VMs.

The basic idea is to modulate the Linux “nice” level of
an interactive VM’s VMM in response to the passing of
time and the user’s button presses. VMWare GSX is a “type
II” VMM [6], meaning that it executes as a process on an
underlying operating system, Linux in our case. As such, we
can control, to some extent, the priority of all the processes
and the OS (Windows XP here) running in the VM by
manipulating the nice level.

There is a tension between user participation and the average
compute rate of non-interactive VMs; the more frequently
we expect the user to press the button, the faster the non-
interactive VMs can operate. We propose to let the adminis-
trator resolve this tension by setting a target mean interarrival
time between button presses. One example of how an admin-
istrator might set the target interarrival time is in response to
the cost of running the VM with more costly VMs having
a longer interarrival time target, and the interactive VM user
paying according to the interarrival time he is assigned. The
more the user pays, the better interactivity he can get. The
control system’s goal is to manipulate the interactive VM’s
nice level to maintain this set interarrival time with as little
variance as possible.

We explore three control algorithms, all of which are in
their infancy. The first two are straightforward translations
of the TCP Reno congestion control algorithm. For us a
congestion event is the user button press and the equivalent
to the congestion window is the linearized nice level of
the interactive VM. Acknowledgments are replaced with the
simple passage of time. After a button press, the priority of the
interactive VM is maximized. It then declines exponentially in
a slow start-like phase and eventually linearly increases at a
rate r. Other VMs have the potential to run increasingly faster
during this process. At some point, through the combination
of the low priority of the interactive VM, the workload inside
it, and the workload on the other VMs, the user becomes
discomforted and the process repeats.

The third algorithm is also similar to TCP Reno, but here
we also control the rate of linear increase from button press
to button press, making r a function of time, with the goal of
achieving the target interarrival time between button presses.
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Fig. 1. Structure of UVMS.

There has been some related work on controlling CPU
allocation by adjusting priorities and scheduler parameters [3],
[10] or by the nice mechanism [14], but none has used direct
user feedback to facilitate the scheduling of both interactive
and non-interactive programs.

In the following, we begin by explaining the details of
our framework, which we refer to as the User-driven Virtual
Machine Scheduling or UVMS. We describe the extent of
control we have using the nice mechanism, how we linearize
this mechanism to simplify the remainder of the system, and
how our three control algorithms work. Next, we describe
very early performance results using the system. Although
these results are largely anecdotal at this point, they are quite
interesting. Using user feedback to schedule the interactive
VMs, the batch machines can make much faster progress
compared with simply running the batch machines at a low
priority. However, it is unclear whether the user feedback rate
is sufficient to control the interarrival time. In the absence of
such control, the system may too frustrating for the end user.

II. MECHANISM

We have prototyped a mechanism to explore the user-driven
scheduling of interactive VMs. This section describes our
experimental framework, the control mechanism we use, and
three algorithms that react to user feedback using the control
mechanism.

A. Overall framework

User-driven Virtual Machine Scheduling, as shown in Fig-
ure 1, involves a remote host machine and local client ma-
chines. The remote host machine, one of the machines in
our cluster, runs VMs. We install Windows XP Professional
in a VM created using VMWare GSX Server 2.5. VMWare
is configured to use bridged networking, which makes the
Windows VM appear as a new and independent machine in
the cluster. To access the VM from local machines, we enable
the Remote Desktop service of Windows XP professional (also
known as Terminal Services.)

The local client machine can be any machine away from
the cluster. We use a remote desktop client to connect to the



Fig. 2. Client interface.

remote Windows VM. Note that there are various methods to
connect to a remote VM’s display, such as X11 and VNC. The
reason why we use remote desktop is that it can achieve better
interactivity compared with other methods. Note that multiple
VMs can be hosted simultaneously in the same remote host
machine. In the current state of this research, we only study the
case of a single VM. Underneath VMWare, the host machine
runs Red Hat Linux 9.0 with a uniprocessor kernel to simplify
the analysis. The host machine is an IBM x335 (2 GHz Xeon,
1.5 GB RAM).

Our UVMS control system consists of a client that runs
in the VM and a scheduler that runs on top of Linux in the
host machine. We modified the UUCS client, developed in
the Understanding User Comfort Project [9], [8], to be our
UVMS client. The UVMS client can monitor user’s activities
and capture user discomfort feedback. Figure 2 shows the most
basic graphical interface of the UVMS client as it appears
in the toolbar of the Windows VM. A user can express
discomfort, either by clicking on the tray icon or by simply
pressing a hot-key (e.g. F11).

UVMS runs under Linux on the host machine, side by side
with the VMs. It consists of three modules:

• Server Module
• Priority Scheduler Module
• Computing Module

The client synchronizes with the server module whenever it
starts running, ends, or captures user discomfort feedback.

The priority scheduler module is responsible for applying
control algorithms to set the priority of the VMs. It also
records realtime information about the VM process and the
scheduler itself, including process id, priority, running time,
and so on. The data we collect is stored in text-based form.

To simulate the non-interactive VMs competing for CPU in
the system, the computing module launches and monitors a
computing process which keeps running a unit busy loop (a
loop which finishes computing in a certain unit of time, e.g.
0.01 seconds). We measure the amount of computation as the
number of unit busy loops finished.

B. Control mechanism

By default, processes in Linux are scheduled using the
SCHED OTHER policy. In this policy, each process has a dy-
namic priority level. Linux ranks the processes based on their
priorities and executes the highest priority process. Processes
have an initial static priority that is called the nice value. This
value ranges from -20 to 19 with a default of zero. The smaller
the nice value, the higher the priority. The dynamic priority
is calculated as a function of the nice value and the task’s
interactivity (e.g. sleeping time of a process versus time it
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Fig. 3. Nice control experiment 1.

spends in runnable state) [12]. The user influences the system’s
scheduling decisions by changing the process’s nice value [11].

We control the process of the VM running in the remote
host machine (the core process used by the VMware virtual
machine monitor (VMM) for the execution path within the
VM). The UVMS scheduler monitors the execution of the VM
process and adjusts its priority at run time through the nice
mechanism, based on user feedback. As a first step, we did two
experiments to validate the control capability of our scheduler.

Experiment 1: In this experiment, we measure the running
time of a busy loop program in the VM that is similar to
the computing module, with different nice values of the VM
process. Note that we run the competing computing module
process with a nice value of 0 to compete with the VM process
for CPU. We sweep the nice value of the VM process from
-20 to 19. For each value, we run the program 15 times and
calculate the average. As shown in Figure 3, with nice value -
20, the average running time is 24.32 seconds. As we increase
the nice value from -20 to 19, the running time gradually
increases to about 50 seconds and then abruptly steps to 185.99
seconds.

We repeat the experiment three times with different unit
running time of the computing module. We find the same
trend in all graphs. This experiment shows that by controlling
the nice value of the VM process, we can influence the
performance of the programs inside the VM by a factor of
around 8.

Note that, surprisingly, the nice control mechanism does not
behave linearly.

Experiment 2: In this experiment, we study the sensitivity
of programs inside the VM to the nice value of VM process.
We increase the nice value of the VM process from -20 to
19 at set intervals. We increase the nice value by 1 every 5
seconds. At the same time, we record, at a fine granularity,
the running time of a unit computation inside the VM. From
Figure 4, we can see that with nice value -20, the running time
of the unit computation is 5 microseconds. The running time
increases smoothly as the nice value of the VM increases. As
before, we are running a competing compute module process
with nice value equal to 0 in the host machine to compete
with the VM process for CPU.

We repeat the experiment three times, with different unit
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Fig. 4. Nice control experiment 2.

computations in the computing program and with different
intervals of increasing priority. We find the same trend in all
graphs.

C. Control model

How does a CPU intensive process’s performance change
with its nice value and nice values of other competing pro-
cesses? In this section, we set up a simple yet effective
model to describe a CPU intensive process’s performance as a
function of its nice value and other competing processes’ nice
values.

We assume that the process’s nice value ranges between
−20 and 19, as is reported in the man page that comes with
current Linux kernel 2.4.20-8. Note that the possible difference
of the nice value range between platforms won’t effect our
model as long as we know the range on a specific platform.
For modeling convenience, we map the nice value from [-20,
19] to [1, 40]. This mapping can be converted back easily.
In the paper, we call the mapped nice value normalized nice
value.

Let Px be the percentage of CPU dedicated to process x,
and Tfx be the execution time of process x given Px = 1.
Then we have

Tx =
Tfx

Px
(1)

where Tx is the execution time of process x. Equation 1 holds
for any CPU intensive applications with deterministic compute
cycle requirements.

Assume there are m CPU intensive processes running in the
system, each with nice value n1, n2, n3 ... nm. Then Px can
be modeled using

Px =
40 − nx∑m

i=1 (40 − ni)
(2)

where x is between 1 and m. We call 40 − nx the comple-
mentary nice value of process x. Equation 2 means that the
percentage of CPU cycles that process x can achieve equals
the ratio of its complementary nice value over the sum of all
CPU intensive process’s complementary nice values.

Combining Equation 1 and Equation 2, we derive

Tx =
Tfx × ∑m

i=1 (40 − ni)
40 − nx

(3)
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Fig. 6. Model evaluation experiment II.

We did experiments to validate our model. Figures 5 and 6
show two examples of the experimental data versus predicted
data given by the model. The experiment data is from ex-
periment 1 as we discussed in Section II-B. Clearly, we can
see the model produces satisfactory prediction results until the
normalized nice value exceeds 38, where the experimental data
flattens out while our model shoots much higher.

D. Control algorithm

We seek a scheduling algorithm that balances the comfort
of interactive VM users and the progress of non-interactive
VMs. In other words, we want to maximize the CPU usage
of the non-interactive VMs, modeled in our framework with
the compute module, subject to a constraint on the discomfort
of the the interactive VM users. Our innovation is to have an
interactive VM user directly report his discomfort.

We borrow a simple but well-known algorithm as our
starting point. The TCP congestion control algorithm [17],
[20], [1], [4] is designed to adapt the size of the congestion
window (and hence the send rate) dynamically to the available
bandwidth in the path. For us a congestion event is the user
button press and the equivalent to the congestion window is the
nice value of the VM. Acknowledgments are replaced with the
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Fig. 7. TCP control algorithm.

simple passage of time. In effect, the priority of the interactive
VM starts out at maximum, and then declines with the passage
of time until the user presses the button, at which point the
priority is restored to the maximum and the cycle repeats.

Each of our algorithms has two state variables

• Current control value, r (this is the nice level of the VM)
• Threshold, rt

and three major components:

• Slow Start
• Additive-Increase, Multiplicative-Decrease
• Reaction to the user feedback

We begin with an algorithm with two control parameters:

• Slow Start speed, α
• Additive-Increase speed, β.

Slow Start: If r < rt, we increase r exponentially fast
with time (e.g. 2α), assuming that the performance of the VM
is less likely to be affected under low nice values (i.e. high
priorities).

Additive-Increase, Multiplicative-Decrease: If no user
feedback is received and r ≥ rt, we increase r linearly with
time, r ∝ βt.

Reaction to the user feedback: When the user expresses
his discomfort at level r we immediately set rt = r/2, and
set r to the initial (lowest) priority.

Figure 7 illustrates the execution of the algorithm. On top
of this general TCP Reno lookalike, we implemented three
extended control algorithms based on nonlinear and linear
control schemes. Experimental results of our algorithms will
be discussed in Section III.

1) Nonlinear control scheme: By nonlinear, we mean that
changing a function input does not proportionally change the
output. As discussed in Section II-B, by directly manipulating
the nice value (40 levels from -20 to 19) of the VM process,
we can nonlinearly influence the performance of the programs
inside the VM by factor of around 8. Based on this scheme,
we apply the general TCP control algorithm directly, using r
as the nice level, and as a result, we get our nonlinear control
algorithm.

2) Linear control scheme: As discussed in Section II-C,
Equation 3 models the impact of the nice value on the compute

Control Nice Experimental Normalized
value value data model value
1 -20 24.36 1.00
2 -7 29.14 1.25
3 -1 32.98 1.48
4 3 37.08 1.72
5 5 40.00 1.89
6 7 43.94 2.13
7 9 49.51 2.45
9 11 57.71 2.94
11 13 71.75 3.75
16 15 99.56 5.38
28 17 183.61 10.25

Fig. 8. Linearization.
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rate of a process. Using this model, we can linearize our
control mechanism, as shown in Figure 8, by these means:

• From Figure 3, we can see that the initial 2/3 of the
curve is almost linear. We divide this part as evenly as
possible into 7, assigning control values 1 to 7. These
values ensure distinguishable differences in the running
time.

• For the tail of the curve, we can see that the running
time increases very quickly with even small changes in
the nice values. To preserve the smallest granularity of
the nice value changes, we divide this part into 4 and
assign to it discontinuous control values 9, 11, 16 and
28.

• The time intervals between control values being changed
reflect the differences between the corresponding control
values.

We use discontinuous control values here to show that we
adapt the time intervals of applying control values to the
growing Y axis difference between two consecutive control
values.

Figure 9 shows that with the above linearization to 11
control values and the adaptation of intervals, we can achieve
very good linear control. And we did experiments to evaluate
the TCP control algorithm based on this linear control scheme.

The linear control scheme has the same control parameters
as the nonlinear scheme. The r value of the nonlinear scheme
is transformed via the mapping derived above before it is
applied.



3) Adaptive control scheme: Through experiments, we ob-
serve that the Additive-Increase and Multiplicative-Decrease
phase in our TCP control algorithm is most often dominated
by the linear increase, while the interarrival time between
button presses is quite varied. Recall that we would ideally
want the user to only have to press the discomfort button at
relatively periodic and deterministic points. We extended our
TCP control algorithm to better adapt to user feedback, to
control not only the impact of background processes, but also
the degree of user attention necessary.

In the adaptive algorithm, certain control parameters be-
come state variables:

• Rate of increase, ρ
• Slow Start speed, α = f(ρ)
• Additive-Increase speed, β = g(ρ)
Adaptive reaction to the user feedback: The rate of

increase ρ controls the rate of exponential and linear increase
from user feedback to user feedback. In addition to our original
TCP control algorithm, we introduce an adaptive function to
control the rate of increase:

ρi+1 = ρi

(
1 + γ × Ti − TAV I

TAV I

)
(4)

Here ρi is the rate of increase. Ti is the latest interarrival time
between user feedback. TAV I is the target mean interarrival
time between user feedback, expected by the user or set by
the administrator. γ controls the sensitivity to the feedback.
We applied this adaptive algorithm to the linearized control
scheme.

III. EXPERIMENTS

Using the UVMS, we addressed the questions posed in the
introduction, and we compared the various control algorithms
described in the previous section. At present, we have studied
only a single user, so our results are preliminary, but interesting
and promising.

A. Experimental setup

One of the authors (Lin) volunteered to be our guinea pig.
He used his own desktop in his office to connect to the remote
Windows VM using the Windows Remote Desktop client in
full screen mode. The user used this VM as his desktop during
the day. The only difference from his physical desktop was the
existence of the user feedback button. The UVMS client spoke
to the UVMS scheduler as described earlier. UVMS recorded
the system information as well as the user feedback, which
was later used to generate the results.

We did three experiments corresponding to the three control
algorithms we discussed in Section II-D. The duration of each
experiment was approximately 1 hour.

The user’s activities included typical tasks he performs
daily, for example:

• Browsing with Internet Explorer
• Word processing using Microsoft Word
• Presentation preparation using Microsoft Powerpoint
• Listening to MP3 music using Microsoft Media Player
• Playing games like DemonStar [2] (a 2D shooting game)

Non-linear TCP Control Algorithm
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Fig. 10. Experiment I: nonlinear control scheme.
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Fig. 11. Experiment II: linear control scheme.

B. Metrics

Recall that our goal is to simultaneously provide high
average computation rates to the non-interactive VMs while
keeping the users of the interactive VMs happy. We use two
metrics to evaluate the algorithms.

The interarrival time between user feedbacks is the interval
between two consecutive user feedbacks. This measurement
helps us understand how the user feels (e.g. comfort, happi-
ness) when interacting with the VM. Ideally, the user would
prefer that such feedbacks are far between on average with
very low jitter. We will consider both the average interarrival
time and its standard deviation.

The compute rate is the rate of computation of the com-
peting process launched by the computing module of UVMS.
This metric represents the computation done by other VMs
and non-VM processes running in the same host machine. As
we mentioned before, we measure the amount of computation
as the number of unit busy loops finished. We would like this
rate to be as high as possible.

C. Experimental results and analysis

We show results for our three control algorithms.
1) Experiment I: nonlinear control scheme.: Figure 10

shows the relationship between the compute rate of the non-
interactive process and the interarrival times of the user feed-
backs. Each data point in the figure represents the interarrival
time between two consecutive and the amount of computation
accomplished in the interval.
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Fig. 12. Experiment III: adaptive control scheme.

The average interarrival time between user feedback is
213.17 seconds, with a standard deviation of 97.37 seconds.
The average nice value at which user feels discomfort is 12.12,
with a standard deviation of 6.89. The average compute rate
is 21223.61 units, with a standard deviation of 9804.84 units.

2) Experiment II: linear control scheme.: Figure 11 shows
the relationship between compute rate and interarrival time.
The average interarrival time between user feedbacks is 213.89
seconds, with a standard deviation of 89.28 seconds. The
average nice value at which user feels discomfort is 14.67,
with a standard deviation of 2.06. The average compute rate
is 42824.62 units per interarrival, with a standard deviation of
21981.35 units.

Does the linear control scheme really work better than
the nonlinear control scheme? Although both experiments
have almost the same average interarrival time between user
feedbacks with similar standard deviations, the user felt more
comfortable in Experiment I. More specifically, in Experiment
I, the user felt that the machine always slowed down gradually,
while in Experiment II, he often felt discomforted by the
abrupt slowdown of the machine. One possible reason for this
may be that in the additive-increase phase of Experiment I,
we increase the nice value by 1 in certain interval (e.g. 10
seconds) using nonlinear control of 40 levels of nice values,
while we use discontinuous control values with limited levels
in the other two experiments.

Observe that in both Experiment I and II, the standard
deviation of the interarrival time is very large. While it is clear
that the system was able to react quickly to provide better
performance to the user, the points in time at which the user
had to express discomfort showed a lot of jitter, depending
mostly on what applications he was using. In other words, it
was difficult for the button pressing to become a habit.

Based on this observation, we did experiment III, testing
the adaptive TCP control algorithm, which explicitly tries
to reduce the variance of the discomfort interarrival error
(i.e., the selected interarrival time minus the actual discomfort
interarrival time of the user).

3) Experiment III: adaptive control scheme: Figure 12
shows the relationship with compute rate and time interval.
The target interarrival time (TAV I ) is set to 240 seconds (based
on the user experience in Experiment I and II). The control

parameter γ is set to 0.5, which makes the algorithm very
sensitive to user feedback.

The average interarrival time between user feedback is now
189.44 seconds, with a standard deviation of 56.60 seconds.
The average nice value at which user feels discomfort is 10.28,
with a standard deviation of 2.78. The average compute rate
is 17610.56, with a standard deviation of 6980.43.

As we can see, Experiment III achieved a much lower
deviation of interarrival time, compared with Experiment I and
II. The user felt discomforted at more predictable points in
time, as we hoped for.

What compute rate we can deliver to other VMs and
non-VM processes? In all three experiments, we can see
that the larger the interarrival time is, the higher the compute
rate is. The reason is the larger the interarrival time of user
feedback is, the higher the average nice value (lower priority)
the interactive VM process has, and the more CPU time other
processes will get. However, a large interarrival time also
means that user can tolerate the slowdown of the machine
for a long time without being discomforted.

To further study how high a compute rates we can achieve
by using UVMS, we calculated the accumulated compute
cycles in Experiment I through III. We also ran two more
experiments to calculate the accumulated compute rate of the
computing process when competing with VM process without
UVMS scheduler running. The nice value of the VM process
was -20 in one experiment and -1 in another one. Note that in
all the experiments we did, the nice value of the computing
process was always -20 (highest priority).

Figure 13 summarizes our experimental results. In Experi-
ment II, when user had to tolerate being discomforted at any
time (highly variable interarrival time), we can deliver the
highest compute rate to other processes. The compute rate is
almost 5 times the compute rate without UVMS scheduler
running. In Experiment III, when user felt relatively more
comfortable by expressing feedback in fixed intervals, the
compute rate we could deliver is a little bit lower while it
is still 3 times the compute rate without the UVMS scheduler
running.

IV. OBSERVATIONS

Figure 13 clearly illustrates that it is possible to deliver
higher compute rates to non-interactive VMs when interactive
VMs are scheduled with the use of direct user feedback.
However, is this technique likely to to be practical? This rests
on essentially two questions: will an interactive user tolerate
providing the feedback, and can the adaptive control algorithm
work for long interarrival times?

In our motivating scenario, the user indicates he is willing to
press the button periodically. The more he pays, the longer the
expected interval between button presses. Unfortunately, there
appears to be a tension here. With a long expected interval,
the adaptive algorithm gets very little measurement input,
making it harder for any algorithm to do well. Conversely,
the algorithm is likely to do better with short intervals, but
these are lower paying customers.



Accumulated Average Std. Dev. Average Std. Dev.
compute rate compute rate compute rate interarrival interarrival

Experiment I (nonlinear scheme) 382025 21223.61 9804.84 213.17 97.37
Experiment II (linear scheme) 556720 42824.62 21981.35 213.89 89.28
Experiment III (adaptive scheme) 316990 17610.56 6980.43 189.44 56.60
VM nice value: -20 116987 N/A N/A N/A N/A
VM nice value: -1 133650 N/A N/A N/A N/A

Fig. 13. Comparison of compute rates and interarrival times.

Although we believe it is critical for a user to be able to
asynchronously indicate to the system that he is displeased,
we increasingly believe that having a single bit of information
from the user is insufficient. We are now exploring how to
support interactivity through real-time mechanisms, letting the
user interrupt the system at any time to request a new schedule
for any of his VMs.

V. CONCLUSIONS AND FUTURE WORK

We have described the initial design of a scheduling system
UVMS, that uses direct user feedback to balance between pro-
viding high average computation rates to the non-interactive
VMs while keeping the users of the interactive VMs happy.
We showed the extent of control we have using the nice
mechanism, how we linearize this mechanism to simplify the
remainder of the system, the design of control algorithms and
how our three control algorithms work. We also described very
early experimental results using the system.

Although our results are largely anecdotal at this point,
they are promising. Using feedback it is possible to provide
interactive performance while noninteractive VMs progress
much faster than would otherwise be possible. However, it
appears that more information is needed from the user, perhaps
in the form of a real-time schedule.
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