
Increasing Application Performance In Virtual Environments
Through Run-time Inference and Adaptation

Ananth I. Sundararaj Ashish Gupta Peter A. Dinda
{ais,ashish,pdinda}@cs.northwestern.edu

Department of Computer Science, Northwestern University

Abstract

Virtual machine distributed computing greatly simplifies
the use of widespread computing resources by lowering the
level of abstraction, benefiting both resource providers and
users. Towards that end our Virtuoso middleware closely
emulates the existing process of buying, configuring and
using physical machines. Virtuoso’s VNET component is
a simple and efficient layer two virtual network tool that
makes these virtual machines (VMs) appear to be physi-
cally connected to the home network of the user while si-
multaneously supporting arbitrary topologies and routing
among them. Virtuoso’s VTTIF component continually in-
fers the communication behavior of the application running
in a collection of VMs. The combination of overlays like
VNET and inference frameworks like VTTIF has great po-
tential to increase the performance, with no user or devel-
oper involvement, of existing, unmodified applications by
adapting their virtual environments to the underlying com-
puting infrastructure to best suit the applications. We show
here how to use the continually inferred application topol-
ogy and traffic to dynamically control three mechanisms of
adaptation, VM migration, overlay topology, and forward-
ing to significantly increase the performance of two classes
of applications, bulk synchronous parallel applications and
transactional web ecommerce applications.

1 Introduction

Virtual machines can greatly simplify grid and dis-
tributed computing by lowering the level of abstraction from
traditional units of work, such as jobs, processes, or RPC
calls to that of a raw machine. This abstraction makes re-

Effort sponsored by the National Science Foundation under Grants ANI-
0093221, ACI-0112891, ANI-0301108, EIA-0130869, EIA-0224449, and
gifts from VMware and Dell. Any opinions, findings and conclusions or
recommendations expressed in this material are those of the authors and
do not necessarily reflect the views of the National Science Foundation
(NSF), VMware, or Dell.

source management easier from the perspective of resource
providers and results in lower complexity and greater flex-
ibility for resource users. A virtual machine image that in-
cludes preinstalled versions of the correct operating system,
libraries, middleware and applications can make the deploy-
ment of new software far simpler. We made the first de-
tailed case for grid computing on virtual machines in a pre-
vious paper [10] and we have been developing a middleware
system, Virtuoso, for virtual machine grid computing [37].
Others have shown how to incorporate virtual machines into
the emerging grid standards environment [19]. An introduc-
tion to the state of the art in resource virtualization is also
available [9].

Grid computing is intrinsically about using multiple
sites, with different network management and security
philosophies, often spread over the wide area [11]. Run-
ning a virtual machine on a remote site is equivalent to
visiting the site and connecting a new machine. The na-
ture of the network presence (active Ethernet port, traffic
not blocked, routable IP address, forwarding of its packets
through firewalls, etc) the machine gets, or whether it gets a
presence at all, depends completely on the policy of the site.
Not all connections between machines are possible and not
all paths through the network are free. The impact of this
variation is further exacerbated as the number of sites is in-
creased, and if we permit virtual machines to migrate from
site to site.

To deal with this network management problem in Virtu-
oso, we developed VNET [41], a simple layer 2 virtual net-
work tool. Using VNET, virtual machines have no network
presence at all on a remote site. Instead, VNET provides a
mechanism to project their virtual network cards onto an-
other network, which also moves the network management
problem from one network to another. Because the virtual
network is a layer 2 network, a machine can be migrated
from site to site without changing its presence—it always
keeps the same IP address, routes, etc. The first version of
VNET is publicly available. In part, this paper reports on
dramatically extended second version.

An application running in some distributed comput-

1

Inference
Information

Adaptation
Algorithms

Adaptation
Mechanisms

Improved
Performance

Figure 1. Application inference, adaptation al-
gorithms, and adaptation mechanisms (over-
lay topology and VM migration) work together
to increase application performance.

ing environment must adapt to the (dynamically chang-
ing) available computational and networking resources to
achieve stable high performance. Nonetheless, despite
many efforts [51, 31, 25, 38, 1, 26, 42, 12, 13, 16, 6, 47,
20, 4], adaptation mechanisms and control are not common
on today’s applications. The reason why is that they tend to
be both very application-specific and require considerable
user or developer effort. We claim that adaptation using the
low-level, application-independent adaptation mechanisms
made possible by virtual machines interconnected with a
virtual network is highly effective. Furthermore, the mech-
anisms can be controlled automatically without developer
or user help. This paper provides evidence for this claim.

Custom adaptation by either the user or the resource
provider is exceedingly complex as the application require-
ments, computational and network resources can vary over
time. VNET is in an ideal position to

1. measure the traffic load and application topology of the
virtual machines,

2. monitor the underlying network and its topology,

3. adapt the application as measured in step 1 to the net-
work as measured in step 2, and

4. adapt the network to the application by taking advan-
tage of resource reservation mechanisms.

This paper focuses on steps 1 and 3, as further illustrated in
Figure 1. There is abundant work that suggests that step 2

can be accomplished within or without the virtual network
using both active [35, 48] and passive techniques [50, 27,
36] and we have begun developing our own approach [15].
We are just beginning to work on step 4 [22, 23]

These services can be done on behalf of existing, un-
modified applications and operating systems running in the
virtual machines. One previous paper [41] laid out the argu-
ment and formalized the adaptation problem, while a sec-
ond (workshop) paper [40] gave very preliminary results
on automatic adaptation using one mechanism. Here, we
demonstrate how to control three adaptation mechanisms
provided by our system in response to the inferred commu-
nication behavior of the application running in a collection
of virtual machines, and provide extensive evaluation.

We use the following three adaptation mechanisms:

• Virtual machine migration: Virtuoso allows us to mi-
grate a VM from one physical host to another. Much
work exists that demonstrates that fast migration of
VMs running commodity applications and operating
systems is possible [32, 34, 21]. Migration times down
to 5 seconds have been reported [21]. As migration
times decrease, the rate of adaptation we can support
and our work’s relevance increases. Note that while
process migration and remote execution has a long his-
tory [39, 8, 30, 43, 49], to use these facilities, we must
modify or relink the application and/or use a particular
OS. Neither is the case with VM migration.

• Overlay topology modification: VNET allows us to
modify the overlay topology among a user’s VMs at
will. A key difference between it and overlay work in
the application layer multicast community [2, 3, 18] is
that the VNET provides global control of the topol-
ogy, which our adaptation algorithms currently (but
not necessarily) assume.

• Overlay forwarding: VNET allows us to modify how
messages are routed on the overlay. Forwarding tables
are globally controlled, and topology and routing are
completely separated, unlike in multicast systems.

2 Virtuoso

Virtuoso is a system for virtual machine grid computing
that for a user very closely emulates the existing process of
buying, configuring, and using an Intel-based computer or
collection of computers from a web site. Virtuoso does rudi-
mentary admission control of VMs, but the work described
here additionally provides the ability for the system to adapt
when the user cannot state his resource requirements, and
the ability to support a mode of operation in which VMs
and other processes compete for resources. In effect, the
more competition, the cheaper the cost of admission. More
details are available elsewhere [37].

2

Host 2
+

VNET

Host 1
+

VNET

Foreign host
LAN 3

Foreign host
LAN 4

User’s
LAN

Foreign host
LAN 1

Proxy
+

VNET

IP network

Host 3
+

VNET
Host 4

+
VNET

Foreign host
LAN 2

VM 1

VM 4
VM 3

VM 2

TCP Connections

Figure 2. VNET startup topology.

2.1 VNET

VNET is the part of our system that creates and main-
tains the networking illusion, that the user’s virtual ma-
chines (VMs) are on the user’s local area network. The spe-
cific mechanisms we use are packet filters, packet sockets,
and VMware’s [45] host-only networking interface. Each
physical machine that can instantiate virtual machines (a
host) runs a single VNET daemon. One machine on the
user’s network also runs a VNET daemon. This machine is
referred to as the Proxy.

Although we use VMware as our virtual machine mon-
itor (VMM), VNET can operate with any VMM that pro-
vides an externally visible representation of the virtual net-
work interface. For example, VNET, without modification,
has been successfully used with User Mode Linux [7] and
the VServer extension to Linux [24].

Figure 2 shows a typical startup configuration of VNET
for four hosts, each of which may support multiple VMs.
Each of the VNET daemons is connected by a TCP con-
nection (a VNET link) to the VNET daemon running on the
Proxy. We refer to this as the resilient star backbone cen-
tered on the Proxy. By resilient, we mean it will always be
possible to at least make these connections and reestablish
them on failure. We would not be running a VM on any of
these host machines if it were not possible in some way to
communicate with them. This communication mechanism
can be exploited to provide VNET connectivity for a remote
VM. For example, if an SSH connection can be made to the
host, VNET traffic can be tunneled over the SSH connec-
tion.

The VNET daemons running on the hosts and Proxy
open their virtual interfaces in promiscuous mode using
Berkeley packet filters [29]. Each packet captured from the
interface or received on a link is matched against a forward-
ing table to determine where to send it, the possible choices
being sending it over one of its outgoing links or writing it
out to one of its local interfaces using libnet, which is built

HostHost

vmnet0

Ethernet Packet Tunneled
over TCP/SSL Connection

Ethernet Packet Captured by
Promiscuous Packet Filter

Ethernet Packet
Injected Directly

into VM
interface

“Host Only”
Network

Ethernet Packet is Matched against
the Forwarding Table on that VNET

If a match is found, packet is
forwarded on the link according to the
rule

In this case a match is found and the
forwarding link is the first link

Each successfully matched packet is
also inspected by VTTIF to determine
the local traffic matrix

Ethernet Packet is Matched
against the Forwarding
Table on that VNET

In this case a match has
been found and the
forwarding link is the
destination interface

Hence the Ethernet packet
will be injected into that
interface

First link Second link (to proxy)

Each VNET might have multiple TCP connections
(overlay “links”), one necessarily to the VNET on Proxy
(“second link” in this case) and others optionally to
VNETs on other Hosts (“first link” in this case)

Local traffic matrix as
inferred by VTTIF in VNET

Periodically sent to the
VNET on the Proxy to form
the global traffic matrix

VNET

ethz

VM
“eth0”

VNET

ethy

IP Network

VM
“eth0”

vmnet0

Figure 3. A VNET link.

on packet sockets, available on both Unix and Windows.
Figure 3 illustrates the operation of a VNET link. Each

successfully matched packet is also passed to VTTIF. The
Proxy, through its physical interface, provides a network
presence for all the VMs on the user’s LAN and makes their
configuration a responsibility of the user and his site admin-
istrator.

The star topology is simply the initial configuration. Ad-
ditional links and forwarding rules can be added or removed
at any time. In the case of migration, the VM seamlessly
maintains its layer 2 and layer 3 network presence; nei-
ther MAC nor IP addresses change and the external network
presence of the VM remains on the LAN of the Proxy. Fig-
ure 8 shows a VNET configuration that has been dynami-
cally adapted to reflect a topology change.

A VNET client can query any VNET daemon for avail-
able network interfaces, links, and forwarding rules. It can
add or remove overlay links and forwarding rules. The
primitives generally execute in ∼20 ms, including client
time. On initial startup VNET calculates an upper bound
on the time taken to configure itself (or change topology).
This number is used to determine sampling and smoothing
intervals in VTTIF, as we describe below.

Building on the primitives, we have developed a lan-
guage for describing the VM to host mapping, the topology,
and its forwarding rules. A VNET overlay is usually man-
aged using scripts that generate or parse descriptions in that
language. We can

• Start up a collection of VNET daemons and establish
an initial topology among them.

• Fetch and display the current topology and VM map-
pings.

• Fetch and display the route a packet will take between
two Ethernet addresses.

3

1. Fast updates

Smoothed
Traffic Matrix

2. Low Pass Filter
Aggregation

3. Threshold change
detection

Topology change output

Figure 4. An overview of the dynamic topol-
ogy inference mechanism in VTTIF.

• Compute the differences between the current topology,
forwarding rules, and mappings and a specified topol-
ogy, forwarding rules, and mappings.

• Reconfigure the topology, forwarding rules, and VM
mappings to match a specified topology, forwarding
rules, and mappings.

• Fetch and display the current application topology us-
ing VTTIF.

2.2 VTTIF

The Virtual Topology and Traffic Inference Framework
integrates with VNET to automatically infer the dynamic
topology and traffic load of applications running inside the
VMs in the Virtuoso system. In our earlier work [14], we
demonstrated that it is possible to successfully infer the be-
havior of a BSP application by observing the low level traf-
fic sent and received by each VM in which it is running.
Here we show how to smooth VTTIF’s reactions so that
adaptation decisions made on its output cannot lead to os-
cillation.

VTTIF works by examining each Ethernet packet that a
VNET daemon receives from a local VM. VNET daemons
collectively aggregate this information producing a global
traffic matrix for all the VMs in the system. The applica-
tion topology is then recovered from this matrix by applying
normalization and pruning techniques [14]. Since the mon-
itoring is done below the VM, it does not depend on the
application or the operating system in any manner. VTTIF
automatically reacts to interesting changes in traffic patterns
and reports them, driving the adaptation process. Figure 4
illustrates VTTIF.

VTTIF can accurately recover common topologies from
both synthetic and application benchmarks like the PVM-
NAS benchmarks. For example, Figure 5 shows the topol-
ogy inferred by VTTIF from the NAS benchmark Integer

Figure 5. The NAS IS benchmark running on
4 VM hosts as inferred by VTTIF.

Sort [46] running on VMs. The thickness of each link re-
flects the intensity of communication along it. VTTIF adds
little overhead to VNET. Latency is indistinguishable while
throughput is affected by ∼1%.

Performance VTTIF runs continuously, updating its
view of the topology and traffic load matrix among a col-
lection of Ethernet addresses being supported by VNET.
However, in the face of dynamic changes, natural ques-
tions arise: How fast can VTTIF react to topology change?
If the topology is changing faster than VTTIF can react,
will it oscillate or provide a damped view of the different
topologies? VTTIF also depends on certain configuration
parameters which affect its decision whether the topology
has changed. How sensitive is VTTIF to the choice of con-
figuration parameters in its inference algorithm?

The reaction time of VTTIF depends on the rate of up-
dates from the individual VNET daemons. A fast update
rate imposes network overhead but allows a finer time gran-
ularity over which topology changes can be detected. In our
current implementation, at the fastest, these updates arrive
at a rate of 20 Hz. At the Proxy, VTTIF then aggregates
the updates into a global traffic matrix. To provide a stable
view of dynamic changes, it applies a low pass filter to the
updates, aggregating the updates over a sliding window and
basing its decisions upon this aggregated view.

Whether VTTIF reacts to an update by declaring that the
topology has changed depends on the smoothing interval

4

Figure 6. VTTIF is well damped.

and the detection threshold. The smoothing interval is the
sliding window duration over which the updates are aggre-
gated. This parameter depends on the adaptation time of
VNET, which is measured at startup, and determines how
long a change must persist before VTTIF notices. The de-
tection threshold determines if the change in the aggregated
global traffic matrix is large enough to declare a change
in topology. After VTTIF determines that a topology has
changed, it will take some time for it to settle, showing no
further topology changes. The best case settle time that we
have measured is one second, on par with the adaptation
mechanisms.

Given an update rate, smoothing interval, and detection
threshold, there is a maximum rate of topology change that
VTTIF can keep up with. Beyond this rate, we have de-
signed VTTIF to stop reacting, settling into a topology that
is a union of all the topologies that are unfolding in the net-
work. Figure 6 shows the reaction rate of VTTIF as a func-
tion of the topology change rate and shows that it is indeed
well damped. Here, we are using two separate topologies
and switching rapidly between them. When this topology
change rate exceeds VTTIF’s configured rate, the reported
change rate settles and declines. The knee of the curve de-
pends on the choice of smoothing interval and update rate,
with the best case being ∼1 second. Up to this limit, the rate
and interval set the knee according to the Nyquist criterion.

VTTIF is largely insensitive to the choice of detection
threshold, as shown in Figure 7. However, this parameter
does determine the extent to which similar topologies can be
distinguished. Note that appropriate settings of the VTTIF
parameters are determined by the adaptation mechanisms,
not the application.

Figure 7. VTTIF is largely insensitive to the
detection threshold.

3 Adaptation and VADAPT

Virtuoso uses VTTIF to determine the communication
behavior of the application running in a collection of VMs
and can leverage the plethora of existing work on network
monitoring ([28] is a good taxonomy) to determine the be-
havior of the underlying resources. The VNET component
of Virtuoso provides the mechanisms needed to adapt the
application to the network. Beyond this, what is needed is

• the measure of application performance, and

• the algorithms to control the adaptation mechanisms in
response to the application and network behaviors.

Here the measure is the throughput of the application.

The adaptation control algorithms are implemented in
the VADAPT component of Virtuoso. For a formalization
of the adaptation control problem, please see our previous
work [41]. The full control problem, informally stated in
English, is “Given the network traffic load matrix of the ap-
plication and its computational intensity in each VM, the
topology of the network and the load on its links, routers,
and hosts, what is the mapping of VMs to hosts, the overlay
topology connecting the hosts, and the forwarding rules on
that topology that maximizes the application throughput?”

VADAPT uses greedy heuristic algorithms to quickly an-
swer this question when application information is avail-
able, and VM migration and topology/forwarding rule
changes are the adaptation mechanisms.

5

Dynamically created ring topology (“fast path links”) amongst the VNETs
hosting the VMs, matching the communication topology of the application
running in the VMs (ring in this case) as infered by VTTIF

Foreign host
LAN 1

User’s
LAN

Host 2
+

VNET

Proxy
+

VNET

IP network

Host 3
+

VNET

Host 4
+

VNET

Host 1
+

VNET

Foreign host
LAN 3

Foreign host
LAN 4

Foreign host
LAN 2

VM 1

VM 4
VM 3

VM 2

Resilient Star Backbone

Merged
matrix as
inferred by
VTTIF

Figure 8. As the application progresses VNET
adapts its overlay topology to match that of
the application communication as inferred by
VTTIF leading to an significant improvement
in application performance, without any par-
ticipation from the user.

3.1 Topology adaptation

VADAPT uses a greedy heuristic algorithm to adapt the
VNET overlay topology to the communication behavior of
the application. VTTIF infers the application communica-
tion topology giving a traffic intensity matrix that is repre-
sented as an adjacency list where each entry describes com-
munication between two VMs. The topology adaptation al-
gorithm is as follows:

1. Generate a new list which represents the traffic inten-
sity between VNET daemons that is implied by the
VTTIF list and the current mapping of VMs to hosts.

2. Order this list by decreasing traffic intensity.

3. Establish the links in order until c links have been es-
tablished.

The cost constraint c is supplied by the user or system ad-
ministrator. The cost constraint can also be specified as a
percentage of the total intensity reflected in the inferred traf-
fic matrix, or as an absolute limit on bandwidth.1

Figure 8 illustrates topology adaptation. Here, an appli-
cation configured with neighbor-exchange on a ring appli-
cation topology of four VMs, starts executing with a VNET
star topology (dotted lines) centered on the Proxy. VTTIF
infers the topology and in response VADAPT tells VNET to

1The precise details of this algorithm (and the next) can be found on
our website: http://virtuoso.cs.northwestern.edu/vadapt-algs-rev1.pdf.

add four links (dark lines) to form an overlay ring among the
VNET daemons, thus matching the application’s topology.

We refer to these added links as the fast path topology, as
they lead to faster communication between the application
components. It is important to note that

• The links may be of different types (TCP, UDP,
STUN [33], HTTP, SOAP, etc) depending on the se-
curity policies of the two sites.

• Some links may be more costly than others (for exam-
ple, those that support reservations).

• Not all desired links are possible.

The resilient star topology is maintained at all times. The
fast path topology and its associated forwarding rules are
modified as needed to improve performance.

3.2 Migration

VADAPT uses a greedy heuristic algorithm to map vir-
tual machines onto physical hosts. As above, VADAPT uses
the application communication behavior as captured by VT-
TIF and expressed as an adjacency list as its input. In ad-
dition, we also use throughput estimates between each pair
of VNET daemons arranged in decreasing order. The algo-
rithm is as follows:

1. Generate a new list which represents the traffic inten-
sity between VNET daemons that is implied by the
VTTIF list and the current mapping of VMs to hosts.

2. Order the VM adjacency list by decreasing traffic in-
tensity.

3. Order the VNET daemon adjacency list by decreasing
throughput.

4. Make a first pass over the VM adjacency list to locate
every non-overlapping pair of communicating VMs
and map them greedily to the first pair of VNET dae-
mons in the VNET daemon adjacency list which cur-
rently have no VMs mapped to them. At the end of the
first pass, there is no pair of VMs on the list for which
neither VM has been mapped.

5. Make a second pass over the VM adjacency list, locat-
ing, in order, all VMs that have not been mapped onto
a physical host. These are the “stragglers”.

6. For each of these straggler VMs, in VM adjacency list
order, map the VM to a VNET daemon such that the
throughput estimate between the VM and its already
mapped counterpart is maximum.

7. Compute the differences between the current mapping
and the new mapping and issue migration instructions
to achieve the new mapping.

6

3.3 Forwarding rules

Once VADAPT determines the overlay topology, we
compute the forwarding rules using an all pairs shortest
paths algorithm with each edge weight corresponding to the
total load on the edge from paths we have determined. This
spreads traffic out to improve network performance.

3.4 Combining algorithms

When we combine our algorithms, we first run the mi-
gration algorithm to map the VMs to VNET daemons. Next,
we determine the overlay topology based on that mapping.
Finally, we compute the forwarding rules.

4 Experiments with BSP

Our evaluation of VADAPT for bulk-synchronous paral-
lel applications examines inference time, reaction time, and
benefits of adaptation using topology adaptation, migration,
and both. We find that the overheads of VADAPT are low
and that the benefits of adaptation can be considerable. This
is especially remarkable given that the system is completely
automated, requiring no help from the application, OS, or
developer.

4.1 Patterns

Patterns [14] is a synthetic workload generator that cap-
tures the computation and communication behavior of BSP
programs. In particular, we can vary the number of nodes,
the compute/communicate ratio of the application, and se-
lect from communication operations such as reduction,
neighbor exchange, and all-to-all on application topologies
including bus, ring, n-dimensional mesh, n-dimensional
torus, n-dimensional hypercube, and binary tree. Patterns
emulates a BSP program with alternating dummy compute
phases and communication phases according to the chosen
topology, operation, and compute/communicate ratio.

4.2 Topology adaptation

In earlier work [40] we demonstrated that topology adap-
tation alone can increase the performance of patterns, al-
though the evaluation was very limited. We summarize and
expand on these results here. We studied all combinations
of the following parameters:

• Number of VMs: 4 and 8.

• Application topology and communication patterns:
neighbor exchange on a bus, ring, 2D mesh, and all-
to-all.

• Environments: (a) All VMs on a single IBM e1350
cluster2, (b) VMs equally divided between two adja-
cent IBM e1350 clusters connected by two firewalls
and a 10 mbit Ethernet link, (c) VMs equally divided
between one IBM e1350 cluster and a slower clus-
ter3 connected via two firewalls and a campus net-
work, and (d) VMs spread over the wide area hosted
on performance-diverse machines at CMU, Northwest-
ern, U.Chicago, and on the DOT network4.

Reaction time

For eight VNET daemons in a single cluster that is sepa-
rated from the Proxy and user by a MAN, different fast path
topologies and their default forwarding rules can be config-
ured in 0.7 to 2.3 seconds. This configuration emphasizes
the configuration costs. Creating the initial star takes about
0.9 seconds. Recall from Section 2.2 that the VTTIF in-
ference time depends on the smoothing interval chosen and
other parameters, with the best measured time being about
one second. In the following, VTTIF is configured with a
60 second smoothing interval.

Benefits

If we add c of the n inferred links using the VADAPT topol-
ogy adaptation algorithm, how much do we gain in terms of
throughput, measured as iterations/second of patterns? We
repeated this experiment for all of our configurations. In the
following, we show representative results.

Figure 9 gives an example for the single cluster config-
uration, here running an 8 VM all-to-all communication.
Using only the resilient star, the application has a through-
put of ∼1.25 iterations/second, which increases to ∼1.5 it-
erations/second when the highest priority fast path link is
added. This increase continues as we add links, improving
throughput by up to factor of two.

Figure 10 illustrates the worst performance we mea-
sured, for a bus topology among machines spread over two
clusters separated by a MAN. Even here, VADAPT did not
decrease performance.

Figure 11 shows performance for 8 VMs, all-to-all, in the
WAN scenario, with the hosts spread over the WAN (3 in a
single cluster at Northwestern, 2 in another cluster at North-
western, one in a third MAN network, one at U.Chicago,
and one at CMU. The Proxy and the user are located on a
separate network at Northwestern. Again, we see a signifi-
cant performance improvement as more and more fast path
links are added.

2Nodes are dual 2.0 GHz Xeons with 1.5 GB RAM running Red Hat
Linux 9.0 and VMware GSX Server 2.5, connected by a 100 mbit switch.

3Nodes are dual 1 GHz P3s with 1 GB RAM running Red Hat 7.3 and
VMware GSX Server 2.5, connected by a 100 mbit switch.

4www.dotresearch.org

7

Figure 9. All-to-all topology with eight VMs,
all on the same cluster.

Figure 10. Bus topology with eight VMs,
spread over two clusters over a MAN.

4.3 Migration and topology adaptation

Here we show, for the first time, results for migration and
topology adaptation (Section 3), separately and together.
We studied the following scenarios:

• Adapting to compute/communicate ratio: Patterns was

Figure 11. All-to-all topology with eight VMs,
spread over a WAN.

run in 8 VMs spread over the WAN (4 on Northwest-
ern’s e1350, 3 on the slower Northwestern cluster, and
1 at CMU). The compute/communicate ratio of pat-
terns was varied.

• Adapting to external load imbalance: Patterns was run
in 8 VMs all on Northwestern’s e1350. A high level of
external load was introduced on one of the nodes of the
cluster. The compute/communicate ratio of patterns
was varied.

In both cases, patterns executed an all-to-all communication
pattern.

Reaction time

The time needed by VNET to change the topology is as de-
scribed earlier. The additional cost here is in VM migration.
As we mentioned in the introduction, there is considerable
work on VM migration. Some of this work has reported
times as low as 5 seconds to migrate a full blown personal
Windows VM [21]. Although Virtuoso supports plug-in mi-
gration schemes, of which we have implemented copy using
SSH, synchronization using RSYNC [44], and migration by
transferring redo logs in a versioning file system [5], in this
work, we use RSYNC. The migration time is typically 300
seconds.

8

Figure 12. Effect on application throughput of
adapting to compute/communicate ratio.

Benefits

For an application with a low compute/communicate ra-
tio, we would expect that migrating its VMs to a more
closely coupled environment would improve performance.
We would also expect that it would benefit more from topol-
ogy adaptation than an application with a high ratio.

Figure 12 illustrates our scenario of adapting to the com-
pute/communicate ratio of the application. For a low com-
pute/communicate ratio, we see that the application benefits
the most from migration to a local cluster and the formation
of the fast path links. In the WAN environment, adding the
overlay links alone doesn’t help much because the underly-
ing network is slow. Adding the overlay links in the local
environment has a dramatic effect because the underlying
network is much faster.

As we move towards high compute/communicate ratios
migration to a local environment results in significant per-
formance improvements. The hosts that we use initially
have diverse performance characteristics. This heterogene-
ity leads to increasing throughput differences as the appli-
cation becomes more compute intensive. Because BSP ap-
plications run at the speed of the slowest node, the benefit
of migrating to similar-performing nodes increases as the
compute/communicate ratio grows.

Figure 13 shows the results of adapting to external load
imbalance. We can see that for low compute/communicate
ratios, migration alone does not help much. The VMs are
I/O bound here and do not benefit from being relieved of
external CPU load. However, migrating to a lightly loaded
host and adding the fast path links dramatically increases
throughput. After the migration, the VM has the CPU cy-
cles needed to drive network much faster.

As the compute/communicate ratio increases, we see that
the effect of migration quickly overpowers the effect of

Figure 13. Effect on application throughput of
adapting to external load imbalance.

adding the overlay links, as we might expect. Migrating
the VM to a lightly loaded machine greatly improves the
performance of the whole application.

4.4 Scaling

We tested topology adaptation scenarios (Section 4.2)
with all-to-all traffic among up to 28 VMs, the maximum
possible on a single one of our clusters. While the cost of
VM migration to meet an adaptation goal grows with the
number of VMs, the number of links in the overlay topology
can grow with the square of the number of VMs, thus the
system will scale as VNET scales, not as migration scales.
The number of forwarding rules per host can also grow with
the square of the number of VMs, although the worst topol-
ogy for this is the unlikely to be used linear topology. For an
all-to-all topology, the number of forwarding rules per host
grows linearly with the number of VMs. For the initial star
topology, the total number of links and forwarding rules in
the system grows linearly with the number of VMs.

With 28 VMs, we can create our initial star topology in
about about 2.9 seconds, with 84% of the time spent load-
ing forwarding rules into VNET daemons. Adding the full
all-to-all topology takes 20.5 seconds, of which 67% in-
volves loading forwarding rules. The inference time re-
mains roughly the same as with the smaller scenarios we
described previously.

Not surprisingly, the benefit of adapting the topology to
the application grows as the number of VMs grows.

4.5 Discussion

It is a common belief that lowering the level of abstrac-
tion increases performance while increasing complexity. In
this particular case, the rule may not apply. Our abstraction

9

RBE Spare

Spare

Spare

Spare

Web/Application Server

Image Server

Database Server

Figure 14. The configuration of TPC-W used
in our experiment.

for the user is identical to his existing model of a group of
machines, but we can increase the performance he sees. In
addition, it is our belief that lowering the level of abstrac-
tion also makes adaptation much more straightforward to
accomplish.

Clearly it is possible to use our inference tool, VTTIF,
the adaptation mechanisms of VNET, and the adaptation al-
gorithms of VADAPT to greatly increase the performance
of existing, unmodified BSP applications running in a VM
environment like Virtuoso.

Adaptation needs to be sensitive to the nature of the ap-
plication and different or multiple adaptation mechanisms
may well be needed to increase performance. The infer-
ence capabilities of tools like VTTIF play a critical role in
guiding adaptation so that maximum benefit can be derived
for the application. While VTTIF tells us the application’s
resource demands, it does not (yet) tell us where the per-
formance bottleneck is. This is an important next step for
us. Determining the application’s performance goal is also
a key problem. In this work, we used throughput. More
generally, we can use an objective function, either given by
the programmer or learned from the user.

5 Multi-tier web sites

Can VADAPT help non-parallel applications? Most web
sites serve dynamic content and are built using a multi-tier
model, including the client, the web server front end, the
application server(s), cache(s), and the database. We are
still in the early stages of applying VADAPT to this domain,
but we have promising results that indicate that considerable
performance gains are possible.

TPC-W is an industry benchmark5 for such sites. TPC-

5We use the Wisconsin PHARM group’s implementation [17], particu-
larly the distribution created by Jan Kiefer.

No Topology Topology
No Migration 1.216 1.76
Migration 1.4 2.52

Figure 15. Web throughput (WIPS) with im-
age server facing external load under differ-
ent adaptation approaches.

W models an online bookstore. The separable components
of the site can be hosted in separate VMs. Figure 14 shows
the configuration of TPC-W that we use, spread over four
VMs hosted on our e1350 cluster. Remote Browser Emu-
lators (RBEs) simulate users interacting with the web site.
RBEs talk to a web server (Apache) that also runs an ap-
plication server (Tomcat). The web server fetches images
from an NFS-mounted image server, alternatively forward-
ing image requests directly to an Apache server also run-
ning on the image server. The application server uses a
backend database (MySQL) as it generates content. We run
the browsing interaction job mix (5% of accesses are order-
related) to place pressure on the front-end web servers and
the image server.

The primary TPC-W metric is the WIPS rating. Fig-
ure 15 shows the sustained WIPS achieved under different
adaptation approaches. We are adapting to a considerable
external load being applied to the host on which the im-
age server is running. When VADAPT migrates this VM to
another host in the cluster, performance improves. Recon-
figuring the topology also improves performance as there is
considerable traffic outbound from the image server. Us-
ing both adaptation mechanisms simultaneously increases
performance by a factor of two compared to the original
configuration.

6 Conclusions

We have demonstrated the power of adaptation at the
level of a collection of virtual machines connected by a
virtual network. Specifically, we can, at run-time, infer
the communication topology of a BSP application or web
site executing in a set of VMs. Using this information, we
can dramatically increase application throughput by using
heuristic algorithms to place the VMs on appropriate nodes
and partially or completely match the application topology
in our overlay topology. Unlike previous work in adaptive
systems and load balancing, no modifications to the appli-
cation or its OS are needed, and our techniques place no
requirements on the two other than they generate Ethernet
packets.

10

References

[1] ARABE, J., BEGUELIN, A., LOWEKAMP, B., E. SELIG-
MAN, M. S., AND STEPHAN, P. Dome: Parallel program-
ming in a heterogeneous multi-user environment. Tech. Rep.
CMU-CS-95-137, Carnegie Mellon University, School of
Computer Science, April 1995.

[2] BANERJEE, S., LEE, S., BHATTACHARJEE, B., AND

SRINIVASAN, A. Resilient multicast using overlays. In Pro-
ceedings of the ACM SIGMETRICS Conference on Measure-
ment and Modeling of Computer Systems (June 2003).

[3] BIRRER, S., AND BUSTAMANTE, F. Nemo: Resilient peer-
to-peer multicast without the cost. In Proceedings of the 12th
Annual Multimedia Computing and Networking Conference
(January 2005).

[4] BLYTHE, J., DEELMAN, E., GIL, Y., KESSELMAN, C.,
AGARWAL, A., MEHTA, G., AND VAHI, K. The role of
planning in grid computing. In Proceedings of the Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS) (2003).

[5] CORNELL, B., DINDA, P., AND BUSTAMANTE, F. Way-
back: A user-level versioning file system for linux. In Pro-
ceedings of USENIX 2004 (Freenix Track) (July 2004).

[6] CYBENKO, G. Dynamic load balancing for distributed
shared memory multiprocessors. Journal of Parallel and
Distributed Computing 7, 2 (October 1989), 279–301.

[7] DIKE, J. A user-mode port of the linux kernel. In Proceed-
ings of the USENIX Annual Linux Showcase and Conference
(Atlanta, GA, October 2000).

[8] DOUGLIS, F., AND OUSTERHOUT, J. Process migration
in the Sprite operating system. In Proceedings of the 7th
International Conference on Distributed Computing Systems
(ICDCS) (September 1987).

[9] FIGUEIREDO, R., DINDA, P., AND FORTES, J., Eds. Spe-
cial Issue On Resource Virtualization. IEEE Computer.
IEEE, May 2005.

[10] FIGUEIREDO, R., DINDA, P. A., AND FORTES, J. A case
for grid computing on virtual machines. In Proceedings of
the 23rd International Conference on Distributed Computing
Systems (ICDCS 2003) (May 2003).

[11] FOSTER, I., KESSELMAN, C., AND TUECKE, S. The
anatomy of the grid: Enabling scalable virtual organiza-
tions. International Journal of Supercomputer Applications
15 (2001).

[12] GRIMSHAW, A., WULF, W., AND THE LEGION TEAM. The
legion vision of a worldwide virtual computer. Communica-
tions of the ACM 40, 1 (1997).

[13] GRIMSHAW, A. S., STRAYER, W. T., AND P.NARAYAN.
Dynamic object-oriented parallel processing. IEEE Paral-
lel and Distributed Technology: Systems and Applications, 5
(May 1993), 33–47.

[14] GUPTA, A., AND DINDA, P. A. Infering the topology and
traffic load of parallel programs running in a virtual machine

environment. In Proceedings of the 10th Workshop on Job
Scheduling Policies for Parallel Program Processing(JSPPP
2004) (June 2004).

[15] GUPTA, A., ZANGRILLI, M., SUNDARARAJ, A., DINDA,
P. A., AND LOWEKAMP, B. B. Free network measurement
for adaptive virtualized distributed computing. In Submis-
sion.

[16] HARCHOL-BALTER, M., AND DOWNEY, A. B. Exploiting
process lifetime distributions for dynamic load balancing. In
Proceedings of ACM SIGMETRICS ’96 (May 1996), pp. 13–
24.

[17] HAROLD W. CAIN, RAVI RAJWAR, M. M., AND LIPASTI,
M. H. An architectural evaluation of Java TPC-W. In Pro-
ceedings of the Seventh International Symposium on High-
Performance Computer Architecture (January 2001).

[18] HUA CHU, Y., RAO, S., AND ZHANG, H. A case for end-
system multicast. In Proceedings of the ACM SIGMETRICS
Conference on Measurement and Modeling of Computer Sys-
tems (2000), pp. 1–12.

[19] KEAHEY, K., DOERING, K., AND FOSTER, I. From sand-
box to playground: Dynamic virtual environments in the
grid. In Proceedings of the 5th International Workshop on
Grid Computing (November 2004).

[20] KICHKAYLO, T., AND KARAMCHETI, V. Optimal resource-
aware deployment planning for component-based distributed
applications. In Proceedings of the Thirteenth IEEE Inter-
national Symposium on High-Performance Distributed Com-
puting (HPDC) (June 2004), pp. 150–159.

[21] KOZUCH, M., SATYANARAYANAN, M., BRESSOUD, T.,
AND KE, Y. Efficient state transfer for internet sus-
pend/resume. Tech. Rep. IRP-TR-02-03, Intel Research Lab-
oratory at Pittburgh, May 2002.

[22] LANGE, J. R., SUNDARARAJ, A. I., AND DINDA, P. A.
Automatic dynamic run-time optical network reservations.
In Proceedings of the 14th IEEE International Symposium
on High-Performance Distributed Computing (HPDC) (July
2005). In this volume.

[23] LIN, B., AND DINDA, P. Vsched: Mixing batch and interac-
tive virtual machines using periodic real-time scheduling. In
Submission. A version of this paper is available as Technical
Report NWU-CS-05-06, Department of Computer Science,
Northwestern University.

[24] LINUX VSERVER PROJECT. http://www.linux-vserver.org.

[25] LOPEZ, J., AND O’HALLARON, D. Support for interactive
heavyweight services. In Proceedings of the 10th IEEE Sym-
posium on High Performance Distributed Computing HPDC
2001 (2001).

[26] LOWEKAMP, B., AND BEGUELIN, A. Eco: Efficient col-
lective operations for communication on heterogeneous net-
works. In Proceedings of the 10th International Parallel Pro-
cessing Symposium (1996), pp. 399–406.

[27] LOWEKAMP, B., O’HALLARON, D., AND GROSS, T. Di-
rect queries for discovering network resource properties in
a distributed environment. In Proceedings of the 8th IEEE

11

International Symposium on High Performance Distributed
Computing (HPDC99) (August 1999), pp. 38–46.

[28] LOWEKAMP, B., TIERNEY, B., COTTREL, L., HUGHES-
JONES, R., KIELEMANN, T., AND SWANY, M. A hierar-
chy of network performance characteristics for grid appli-
cations and services. Tech. Rep. Recommendation GFD-
R.023, Global Grid Forum, May 2004.

[29] MCCANNE, S., AND JACOBSON, V. The BSD packet filter:
A new architecture for user-level packet capture. In Prodeed-
ings of USENIX 1993 (1993), pp. 259–270.

[30] MILOJICIC, D., DOUGLIS, F., PAINDAVEINE, Y.,
WHEELER, R., AND ZHOU, S. Process migration. ACM
Computing Surveys 32, 3 (September 2000), 241–299.

[31] NOBLE, B. D., SATYANARAYANAN, M., NARAYANAN,
D., TILTON, J. E., FLINN, J., AND WALKER, K. R. Agile
application-aware adaptation for mobility. In Proceedings of
the 16th ACM Symposium on Operating Systems Principles
(1997).

[32] OSMAN, S., SUBHRAVETI, D., SU, G., AND NIEH, J. The
design and implementation of Zap: A system for migrating
computing environments. In Proceedings of the 5th Sym-
posium on Operating Systems Design and Implementation
(December 2002).

[33] ROSENBERG, J., WEINBERGER, J., HUITEMA, C., AND

MAHY, R. Stun: Simple traversal of user datagram protocol
(udp) through network address translators (nats). Tech. Rep.
RFC 3489, Internet Engineering Task Force, March 2003.

[34] SAPUNTZAKIS, C., CHANDRA, R., PFAFF, B., CHOW, J.,
LAM, M., AND ROSENBLUM, M. Optimizing the migration
of virtual computers. In Proceedings of the 5th Symposium
on Operating Systems Design and Implementation (Decem-
ber 2002).

[35] SAVAGE, S. Sting: A TCP-based network measurement tool.
In Proceedings of the USENIX Symposium on Internet Tech-
nologies and Systems (1999).

[36] SESHAN, S., STEMM, M., AND KATZ, R. H. SPAND:
Shared passive network performance discovery. In Proceed-
ings of the 1997 USENIX Symposium on Internet Technolo-
gies and System (USITS) (97).

[37] SHOYKHET, A., LANGE, J., AND DINDA, P. Virtuoso: A
system for virtual machine marketplaces. Tech. Rep. NWU-
CS-04-39, Department of Computer Science, Northwestern
University, July 2004.

[38] SIEGELL, B., AND STEENKISTE, P. Automatic gener-
ation of parallel programs with dynamic load balancing.
In Proceedings of the Third International Symposium on
High-Performance Distributed Computing (August 1994),
pp. 166–175.

[39] STEENSGAARD, B., AND JUL, E. Object and native code
process mobility among heterogeneous computers. In Pro-
ceedings of the 15th ACM Symposium on Operating Systems
Principles (December 1995), ACM.

[40] SUNDARARAJ, A., GUPTA, A., AND DINDA, P. Dy-
namic topology adaptation of virtual networks of virtual ma-
chines. In Proceedings of the Seventh Workshop on Lan-
gauges, Compilers and Run-time Support for Scalable Sys-
tems (LCR (October 2004).

[41] SUNDARARAJ, A. I., AND DINDA, P. A. Towards virtual
networks for virtual machine grid computing. In Proceedings
of the 3rd USENIX Virtual Machine Research and Technol-
ogy Symposium (VM 2004) (May 2004).

[42] TAPUS, C., CHUNG, I.-H., AND HOLLINGSWORTH, J. Ac-
tive harmony: Towards automated performance tuning. In
Proceedings of the 2002 ACM/IEEE Conference on Super-
computing (2002), pp. 1–11.

[43] THAIN, D., AND LIVNY, M. Bypass: A tool for build-
ing split execution systems. In Proceedings of the Ninth
IEEE Symposium on High Performance Distributed Comput-
ing (HPDC9) (Pittsburgh, PA, August 2000).

[44] TRIDGELL, A. Efficient Algorithms for Sorting and Synchro-
nization. PhD thesis, Australian National University, 1999.

[45] VMWARE CORPORATION. http://www.vmware.com.

[46] WHITE, S., ALUND, A., AND SUNDERAM, V. S. Perfor-
mance of the NAS parallel benchmarks on PVM-Based net-
works. Journal of Parallel and Distributed Computing 26, 1
(1995), 61–71.

[47] WILLEBEEK-LEMAIR, M., AND REEVES, A. Strategies
for dynamic load balancing on highly parallel computers.
IEEE Transactions on Parallel and Distributed Systems 4,
9 (September 1993), 979–993.

[48] WOLSKI, R., SPRING, N. T., AND HAYES, J. The network
weather service: A distributed resource performance fore-
casting system. Journal of Future Generation Computing
Systems 15, 5–6 (October 1999), 757–768.

[49] ZANDY, V. C., MILLER, B. P., AND LIVNY, M. Process
hijacking. In Proceedings of the 8th IEEE Symposium on
High Performance Distributed Computing (Redondo Beach,
CA, August 1999).

[50] ZANGRILLI, M., AND LOWEKAMP, B. Using passive traces
of application traffic in a network monitoring system. In of
the Thirteenth IEEE International Symposium on High Per-
formance Distributed Computing (HPDC 13) (June 2004).

[51] ZINKY, J. A., BAKKEN, D. E., AND SCHANTZ, R. E. Ar-
chitectural support for quality of service for CORBA objects.
Theory and Practice of Object Systems 3, 1 (April 1997), 55–
73.

12

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

