
Addressing The Trust Asymmetry Problem
In Grid Computing With Encrypted Computation

Peter A. Dinda
pdinda@cs.northwestern.edu

Department of Computer Science
Northwestern University

ABSTRACT
Trust asymmetry is a core, albeit rarely discussed, problem
in scalable computing. Techniques for protecting a host’s
operating system (and other processes) from a user’s process
are well understood and widely deployed. However, there is
currently no way to protect the user’s process from the OS.
Hence, while the host’s owner need not trust the user at all,
the user must trust the owner completely. This, we argue,
leads to practical limits to scalability for computation that,
because of encryption, simply do not exist for communica-
tion. We argue that it is imperative for the grid computing
community to address this problem using encrypted compu-
tation techniques. We then propose a simple mechanism for
encrypted computation of Boolean circuits and show how it
can likely be generalized for use in an object code transla-
tor.

1. INTRODUCTION
The goal of parallel computing is the creation of algorithms
and toolchains that provide performance that scales cleanly
as we add machines. In practical terms, however, there are a
limited number of machines available to a user that are un-
der his control or under the control of his organization. Grid
computing [14, 15] has the potential to make many more ma-
chines available. Early projects such as SETI@Home [30],
Folding@Home [21], and Entropia [6] have demonstrated
that it is possible to successfully scale some applications
to hundreds of thousands of machines. Research in compu-
tational economies [32, 5] suggests that it is at technically
feasible to sell resources in a distributed computing environ-
ment. A future in which loosely coupled applications scale

Effort sponsored by the National Science Foundation un-
der Grants ANI-0093221, ACI-0112891, ANI-0301108, EIA-
0130869, and EIA-0224449, and a gift from VMWare. Any
opinions, findings and conclusions or recommendations ex-
pressed in this material are those of the author and do not
necessarily reflect the views of the National Science Foun-
dation (NSF).

to the number of machines that the world is willing to volun-
teer, or that the user has the money to rent, does not seem
unreasonable, both in terms of need [2] and technology [4,
12, 20].

As his application scales to more and more machines, the
user has less and less control over the machines on which
it runs. Consider any one of the machines on which the
user’s code is running. At a high level of abstraction, that
machine has been sent an input data set and an algorithm,
it will send and receive messages to/from other machines,
and it will produce an output data set to send back to the
user.

Using well understood and widely deployed techniques pio-
neered in the 1960s, the machine’s operating system (and
other processes) are in principle well protected from the
user’s process. In practice, bugs exist and so the machine
may well have been hacked. The user’s process is in an
entirely different position, however. It is completely at the
mercy of the machine’s OS (hacked or not); the OS (or virus)
can straightforwardly

• read the input data sets and messages,

• read the user’s algorithm,

• read the output data sets, and

• write bogus output data sets and messages.

Interestingly, those operating systems that provide the most
isolation and protection in theory and practice, virtual ma-
chine monitors, are in an ideal position to observe the ap-
plication’s computation [17], and communication [18].

Trust asymmetry—the user must trust the machine com-
pletely while the owner of the machine need not trust the
user at all—is the most significant reason why grid com-
puting may not scale to meet the needs of many possible
applications. As the application scales, the user must trust
more individuals and sites, of whom he is likely to know
very little. There certainly exist low stakes applications,
such as SETI@Home and Folding@Home, that can make ef-
fective use of untrusted machines. In these applications, the
datasets, messages, and algorithms are open, and well known
techniques can be used to protect against even Byzantine
failures.



It is important to note that low stakes applications can be
extremely important and have substantial funds applied to
them. It is a low financial impact of information or algo-
rithm disclosure that is important. For example, the high
energy physics applications that have driven much of grid
computing research represent substantial investments on the
part of the U.S. and the E.U. However, the disclosure of data
or algorithms would at worse be linked to scientific miscon-
duct. The effect of trust asymmetry in this context is small,
and is further ameliorated by the fact that it is largely gov-
ernments or scientific labs that are the resource providers
for these applications. Given this, the trust chain-based se-
curity model that is widely deployed is sensible.

High stakes applications, those where disclosure of datasets,
messages, and algorithms would result in significant mone-
tary loss, are, on the other hand, greatly affected by trust
asymmetry, but their users are precisely who are needed to
make scaling of grids to Internet levels necessary: paying
customers. If we do not fix the trust asymmetry problem,
we simply may never create a large scale demand for com-
putational grids, and many applications, constrained to live
within a single organization, will go hungry for cycles. Alter-
natively, a few highly trusted service providers might emerge
that are themselves constrained in how many machines they
can field, and who will most likely exact a high price for
signing their trusted names on legal contracts that indem-
nify the user.

High stakes messages traverse untrusted Internet paths ev-
ery day and can be trivially observed. However, because
of fast encryption [23] and key exchange protocols based
on asymmetric cryptography [24, 9], trust is required only
between the sender and the recipient. The result is that
communication scales. The Internet is composed of tens of
thousands of autonomous systems and we need not consider
the path a message takes through them in order to be confi-
dent that the message was not read or corrupted by nefarious
actors.

We advocate addressing the trust asymmetry problem through
the use of encrypted computation. We envision a post-
compilation step in which input and output keys are cho-
sen, the object code is transformed given the keys, and a
stub based on the keys is generated for encrypting input
datasets, calling the object code, and decrypting output
datasets. This will meet the following requirements:

• The remote machine will be unable to read the input
data sets,

• The remote machine will be unable to reconstruct the
algorithm implemented in the object code,

• The remote machine will be unable to read the output
data set, and

• The user will be able to verify that the output has not
been tampered with.

It is necessary that we be able to prove that these require-
ments are met. If so, then the user need not trust the remote

machine at all, making scaling of high stakes applications to
arbitrary levels possible.

Notice that as the standards put forward by the Global Grid
Forum move towards a web services model [31, 13], which is
effectively an RPC model of distributed computing, the ab-
stract model described above will match increasingly closely
with what is expected to become practice.

We begin by describing several approaches to secure com-
putation to explain why general purpose encrypted compu-
tation is necessary. Next, we describe an algorithm for the
encrypted computation of arbitrary combinational logic cir-
cuits that we believe is new, fast, and difficult to break.
However, we do not yet have a formal proof of the diffi-
culty. We next describe how this algorithm could be used in
an object code translator to meet the requirements laid out
above. We conclude by discussing the next steps and the
likely performance overheads of our approach to encrypted
computation.

2. SECURE COMPUTATION APPROACHES
The following discussion has been, in part, informed by Sar-
menta’s excellent treatment [27, Appendix B], which is writ-
ten from the perspective of his Banyanihan volunteer grid
computing system. The opinions are my own. Banyanihan
itself provides “sabotage tolerance” (sabotage here means
that the remote machine returns the wrong answer) through
techniques related to voting [28].

Trust chains
The trust chain model essentially provides no direct protec-
tion of the inputs, algorithm, and output. Instead, it for-
malizes the notion of trust; you may send code and data to
a machine because it has presented you with a secure docu-
ment that essentially says “A says that I can be trusted”. If
you know A, directly or indirectly, then you may be willing
to use the machine.

Trust chain models are widely used in today’s Internet, par-
ticularly for the World Wide Web. Digital certificates (see [10]
for an in-depth discussion) are used to authenticate and au-
thorize users and web sites. A certificate authority, such
as Verisign, signs a certificate for a web site. The certificate
binds the identity of operator of the web site (Microsoft, say)
with the specific web site (www.microsoft.com). It is an as-
sertion of trust: the user trusts that Verisign can identify
Microsoft and then, assured that he is in fact talking to Mi-
crosoft, determines whether to trust a particular web page.
The practice in the grid computing community is similar [3].

The problem with trust chains is that they are likely to
be complex to understand and evaluate. If a human must
be in the loop, or must write a policy about what is to
be trusted or not, then it is likely that errors will occur.
This possibility obviously precludes using trust chains with
high stakes applications. Another problem is that formal
reasoning about trust chains is in its infancy. Trust chains
in web systems are typically very short, potentially leading
to limited scalability. Revocation is also a problem. When a
machine goes bad, it might take a long time before everyone
knows it.



Attestation
Attestation, as in Terra [16], essentially provides a the user
with a certificate chain that describes the software stack on
the machine. This makes it possible to detect software stacks
that have been tampered with. The user can then choose
to run his code and provide his data to only to appropriate
and unmodified software stacks.

The problem is that a software stack is a massive and com-
plex entity, so even the unmodified stack may have features
or security holes that leave the user’s code and data vulner-
able. Complexity is growing, which suggests that the risk
associated with attestation is also growing. Furthermore, as
with trust chains, the verification of an attestation chain or
policy creation may fall heavily on the user, making errors
likely. High stakes application users are likely to be wary.

Another issue with attestation is that a software stack can
often change. In many cases, these changes are not optional;
security patches must be deployed promptly. The certifi-
cate chain would need to be regenerated and redistributed
on such changes, limiting scalability. One response to this
problem has been a proposal for semantic attestation [19] in
which a component of the stack would attest to its interface
and operation. Since a patch would not likely change this
interface, new certificates would not need to be generated.
However, determining the semantics and developing a proof
that the code implements them is a hard problem.

Obfuscation
Compiler techniques have been developed to make it difficult
to understand, and thus reverse engineer object code [8, 7].
In some cases inputs and outputs may also be obfuscated.
Performance impacts are often acceptable.

While this approach provides some promise in making the
remote machine unable to reconstruct the algorithm, there
are no proofs of difficulty for these methods. The lack of
proofs makes it unlikely that users who need to run high
stakes applications will be satisfied with obfuscation. There
is no way to quantify the risk of the remote machine deter-
mining the inputs, algorithm, and output.

For the compiler community, that compiler toolchains have
been developed that implement practical obfuscation sug-
gests that it is likely that the techniques that we describe in
the next section are implementable.

Encrypted computation
Encrypted computation seeks to meet some or all of the re-
quirements laid out in the introduction, including proofs of
the difficulty of circumventing its safeguards. The combina-
tion of a simple model (the remote machine is simply not
trusted at all) and proofs is very powerful because it is very
simple. Of all the techniques described here, it is arguably
easiest for a human being to understand and thus the most
likely to be trusted with a high stakes application.

Unfortunately, encrypted computation is quite complex. There
are two essential approaches. The first is to develop en-
crypted algorithms for specific problems. This has recently
seen success in polynomial evaluation [25] and pattern match-
ing on strings [29]. For obvious reasons, this is unlikely to

be an approach that developers or users of high stakes ap-
plications are likely to take.

The second approach to encrypted computation is general.
The earliest work in this area Abadi and Feigenbaum’s sem-
inal work on the secure evaluation of Boolean circuits [1].
That work has not been deployed in practice because of
the need for considerable communication back to the user’s
machine. It is often referred to as “interactive” encrypted
computation, meaning that the evaluator must frequently
ask questions of the submitter.

Fast, non-interactive encrypted computation would be much
preferred in our high stakes application scenario. Sander
and Tschudin’s work [25] may be extensible to general com-
putation. Of particular interest is recent work by Loureiro
et al [22] that looks at non-interactive encrypted computa-
tion of Boolean circuits using encryption techniques drawn
from coding theory. Our independently developed scheme,
as described in the next section, is potentially related to
Loureiro’s approach.

Mobile agents
The mobile agent community has given considerable thought
to the security components of their work. Although a large
part of this work is concerned with the path an agent takes,
either avoiding certain hosts or being able to determine the
path a posteriori, mobile cryptography has also been a sig-
nificant concern [33, 26]. It seems logical that the high per-
formance computing community should be able to leverage
this work.

3. A SIMPLE APPROACH TO ENCRYPTED
COMPUTATION OF BOOLEAN CIRCUITS

Encrypted computation of a Boolean circuit to meet the
requirements laid out in the introduction appears to be a
difficult problem. However, looks may be deceiving. In the
following, we describe a technique for doing so which, as far
as we are aware, is new. However, we do not yet have a
proof of the difficulty of circumventing this technique.

Consider a Boolean function f ,

Y = fX

In which X is a vector of n input bits, numbered x1 through
xn and Y is a vector of m output bits, numbered y1 through
ym.

The function f can obviously be considered in a number
of equivalent forms, such as sum of products (disjunctive
normal) or a truth table. Let’s write an example f in these
two forms, for n = 3 and m = 2:

y1 = (x1 ∧ ¬x2) ∨ (¬x1 ∧ x3)

y2 = (x2 ∧ ¬x3) ∨ (x1 ∧ x3)



x1 x2 x3 y1 y2

0 0 0 0 0
0 0 1 1 0
0 1 0 0 1
0 1 1 1 0
1 0 0 1 0
1 0 1 1 1
1 1 0 0 1
1 1 1 0 1

Now, suppose that we want to execute f remotely for an in-
put X = (0, 0, 1) such that the remote site cannot determine

• the input X,

• the output Y corresponding to the input X, and

• the function f .

For now, we will let the remote site cheat (it can return the
wrong answer), record (it can store inputs and outputs as
well as f), and play back.

We claim that the three constraints can be met using one-
time pad encryption [11] folded into the function.

Suppose we have a one-time pad for the input and one for
the output. These are just randomly generated bit vectors
of length n and m, respectively. To encrypt with a one-time
pad, we just exclusive-or the bit vector with the input. To
decrypt, we just exclusive-or the encrypted value with the
bit vector again. Suppose we have a one time pad for our 3
input bits that is E = (1, 0, 1),

EX = (1, 0, 0)

EEX = (0, 0, 1)

We can think of using a one-time pad with the circuit f
as well. Suppose we again use E = (1, 0, 1). Now we can
interpret this bit vector as the template for inversion on the
circuit inputs. E = (1, 0, 1) means invert the first input (if it
is zero, it will clearly become 1, and if it is one, it will clearly
become zero in the exclusive or step), leave the second input
alone, and insert the third input:

x′
1 = ¬x1

x′
2 = x2

x′
3 = ¬x3

Of course, if we add these inverters, we are also changing the
output of the circuit. However, recall that we can apply the
one-time pad twice to get back the original input. Similarly
here, we can clearly insert two inverters in a row wherever
the one-time pad tells us and be left with the same circuit:

x′
1 = ¬¬x1

x′
2 = x2

x′
3 = ¬¬x3

f’=DfE

fX

X’ Y’

Y

E E D D

Figure 1: Encrypted computation of logic circuit

Clearly, we can play this same game at the output of the
circuit. Suppose that D is the one-time pad for the outputs.
Then:

Y = DDfEEX (1)

Now we can play the following trick. The client generates a
new function:

f ′ = DfE (2)

and its input:

X ′ = EX (3)

which are given to the server. The server computes

Y ′ = f ′X ′ (4)

which it passes back to the client, which computes the actual
output as

Y = DY ′ (5)

Figure 1 illustrates this process graphically.

Notice that X ′ is a one-time pad encryption of the inputs. It
is very hard to derive X from X ′ without knowing the pad
E. The same is true for Y and D. Notice, however, that
we have given both D and E to the server. Even worse, it
looks like we gave f to the server. But have we?

The key claim is that by folding E and D into f (i.e., f ′ =
DfE), we have made it very hard to “factor out” E (which
is needed to decrypt the input), f (the function we want
to apply), and D (which is needed to decrypt the output).
A proof of this claim is needed. Boolean functions can of
course describe any computation, so, if the above claim is
correct, then we now have a way to do remote computation
in which the remote site, the server, cannot know the input,
the output, or the structure of the computation.

Consider an example. Here we continue to assume that E =
(1, 0, 1) and D = (1, 0). Now, let’s look at what we have for



f ′:

y′
1 = ¬((¬x′

1 ∧ ¬x′
2) ∨ (¬¬x′

1 ∧ ¬x′
3))

= ¬((¬x′
1 ∧ ¬x′

2) ∨ (x′
1 ∧ ¬x′

3))

= ¬(¬x′
1 ∧ ¬x′

2) ∧ ¬(x′
1 ∧ ¬x′

3)

= (x′
1 ∨ x′

2) ∧ (¬x′
1 ∨ x′

3)

= ((x′
1 ∨ x′

2) ∧ ¬x′
1) ∨ ((x′

1 ∨ x′
2) ∧ x′

3)

= (¬x′
1 ∧ x′

2) ∨ (x′
1 ∧ x′

3) ∨ (x′
2 ∧ x′

3)

y′
2 = (x′

2 ∧ ¬¬x′
3) ∨ (¬x′

1 ∧ ¬x′
3)

= (x′
2 ∧ x′

3) ∨ (¬x′
1 ∧ ¬x′

3)

x′
1 x′

2 x′
3 y′

1 y′
2

0 0 0 0 1
0 0 1 0 0
0 1 0 1 0
0 1 1 1 1
1 0 0 0 0
1 0 1 1 0
1 1 0 0 0
1 1 1 1 1

The highlighted outputs are those that have changed from
f to f ′.

Now consider what happens for a possible input X = (0, 1, 0):

X ′ = EX

= (1, 1, 1)

Y ′ = f ′X ′

= (1, 1)

Y = DX ′

= (0, 1)

Other attacks
We could deal with replay and storage attacks straightfor-
wardly: use a different set of one-time pads E and D each
time, recomputing f ′ and shipping it as we go. If we reuse
the pads, we increase the chances of the encryption being
broken by, for example, frequency analysis. Of course, if the
inputs themselves are uniformly distributed, even this would
seem not to be possible.

We could deal, at least probabilistically, with the server re-
turning a false answer to us by embedding a test circuit in f ′.
In other words, we would add an unencrypted test circuit
g to f ′ that shares in the inputs (additional unencrypted
inputs could also be added) and produced unencrypted out-
puts. The test circuit’s inputs and outputs could not be
distinguished from the “real” inputs and outputs, and the
test circuit would fold into f ′ without being extractable.
Then, we could add a test sequence to the input that would
produce known output if the remote server was not lying.

Concerns
It is possible that our process could cause the expected size
of the encrypted circuit to be much larger than the original
circuit, thus requiring much more time to compute it. In the
worst case, one could imagine an exponential explosion in

the size of the circuit. We do not yet know what the average
and worst case behavior of this approach is.

A second concern combines practical and theoretical as-
pects. In an implementation of this idea, the circuit, after
being encrypted, would likely be re-optimized. If the simple
version of the circuit f ′ with the inverters at the inputs and
outputs is the optimal representation, then it is certainly
possible that the optimizer would choose it. In other words,
optimization of the circuit could potentially turn out to be
an attack.

4. ENCRYPTED COMPUTATION OF A
BASIC BLOCK

Boolean circuits are fine, but we really want to ship around
programs that target some instruction set architecture. Therein
lies a rub. Consider a basic block of instructions:

ADD R1, R0, R3

SUB R3, R5, R5

ST R1, A

Clearly, the basic block has simple straight-line flow control
(ignore exceptions for now) and we can easily describe it as
a data flow graph with the instructions being nodes, and
dependencies being edges. Data (X) flows into the graph
from memory and registers and flows out to memory and
registers (Y ).

Suppose we wanted to ship the basic block to a remote server
to be executed. Naively, we could apply the analogue of the
Y = DDfEEX approach of the previous section, creating
a basic block f ′ that looked like:

XOR R1, E (or part of E)

XOR R0, E

XOR R5, E

ADD R1, R0, R3

SUB R3, R5, R5

ST R1, A

XOR R3, D (or part of D)

XOR R5, D

XOR A, D

However, this has obvious problems: We can clearly see E
and D and we have not changed the basic block in any way.
All this would do is slow us down.

To apply our encrypted computation scheme to a basic block,
we would need to do the following:

1. Generate the above “encrypted” basic block.

2. Generate a data flow graph for the block.

3. Drop a level of abstraction: replace the data flow graph
nodes with the logic design of the data path implied
by the instructions. For example, the ADD instruction
might turn into a carry lookahead adder implementa-
tion in NAND gates. Notice that the XOR instructions
will turn into selective inversions of the inputs and
outputs.



4. Resimplify the Boolean function, folding in the invert-
ers as in the previous section.

5. Generate a new instruction sequence that implements
the new folded Boolean function. This would use tech-
niques such as those used in code generation for digital
logic simulators.

It is not clear how much overhead this technique would in-
troduce or how the overhead would vary based on the in-
struction sequence.

Control flow
Beyond basic blocks, the primary challenge is control flow.
To meet this challenge we would have to produce a Mealy
or Moore machine, combining the combinational logic of the
basic blocks, with state that flows from block to block as well
as that enables, via a multiplexor, which block to use for the
current step.

Concerns
Beyond the concerns of the previous section, here we would
have to understand the ramifications of the initial instruc-
tion sequence of the basic block. In a sense, this sequence
represents an optimized representation of a Boolean circuit,
factoring out functionality into RTL-level constructs like
adders. It is conceivable that the instruction sequence we
generate will be very similar—that the optimal representa-
tion of the intermediate Boolean circuit form is, in fact, the
original circuit augmented with XOR instructions on entry
and exit, and that the optimizer finds that sequence.

5. CONCLUSION
Solving the trust asymmetry problem is essential to develop-
ing truly scalable grid computing, and, in particular, to at-
tracting much needed high stakes applications. While there
are many possible approaches, we have argued that general
purpose encrypted computation is the one that is most de-
sirable because its combination of simplicity for the user (no
machines need be trusted at all) and proofs of the difficulty
of subversion.

We have also described what we believe to be a new, simple
approach to the encrypted computation of Boolean functions
and shown how it could be used to transform object code
into secure object code. This work is in its very early stages.
In particular, we have no proof of security at this point, and
our transformation scheme applies only to a basic block,
although we know how to in principle extend it for control
flow.

We are currently working on a proof of the difficulty of
breaking our encryption scheme. We also plan to develop
a proof of concept within the .NET CLR framework.

6. REFERENCES
[1] Abadi, M., and Feigenbaum, J. Secure circuit

evaluation. Journal of Cryptography 2, 1 (1990), 1–12.

[2] http://www.ncsc.org/news/pr/surabiogrid.html.

[3] Butler, R., and Genovese, T. Global grid forum
certificate policy model. Tech. rep., Global Grid
Forum, June 2003.

[4] Butt, A. R., Zhang, R., and Hu, Y. C. A
self-organizing flock of condors. In Proceedings of
ACM/IEEE SC 2003 (Supercomputing).

[5] Buyya, R., Giddy, J., and Abramson, D. An
economy grid archicture for service-oriented
distributed computing. In Proceedings of the 10th
IEEE Heterogeneous Computing Workshop (April
2001).

[6] Chien, A. A., Calder, B., Elbert, S., and

Bhatia, K. Entropia: architecture and performance of
an enterprise desktop grid system. Journal of Parallel
and Distributed Computing 63, 5 (2003), 597–610.

[7] Collberg, C., and Thomborson, C. Watermarking,
tamper-proofing, and obfuscation - tools for software
protection. Tech. Rep. 2003-03, Department of
Computer Science, University of Arizona, 2000.

[8] Collberg, C., Thomborson, C., and Low, D.

Manufacturing cheap, resilient, and stealthy opaque
constructs. In Principles of Programming Languages
1998, POPL’98 (January 1998).

[9] Diffie, W., and Hellman, M. E. New directions in
cryptography. IEEE Transactions on Information
Theory IT-22, 6 (1976), 644–654.

[10] Ellison, C., Frantz, B., Lampson, B., Rivest, R.,

Thomas, B., and Ylonen, T. Spki certificate theory.
Tech. Rep. RFC 2693, Internet Engineering Task
Force, September 1999.

[11] Ferguson, N., and Schneier, B. Practical
Cryptography. John Wiley and Sons, 2003.

[12] Figueiredo, R., Dinda, P. A., and Fortes, J. A
case for grid computing on virtual machines. In
Proceedings of the 23rd International Conference on
Distributed Computing Systems (ICDCS 2003) (May
2003).

[13] Foster, I., Berry, D., Djaoi, A., Grimshaw, A.,

Horn, B., Kishimoto, H., Maciel, F., Savva, A.,

Siebenlist, F., Subramaniam, R., Treadwell, J.,

and von Reich, J. The open grid services
architecture version 1.0. Tech. rep., Global Grid
Forum, July 2004.

[14] Foster, I., and Kesselman, C., Eds. The Grid:
Blueprint for a New Computing Infrastructure.
Morgan Kaufmann, 1999.

[15] Foster, I., Kesselman, C., and Tuecke, S. The
anatomy of the Grid: Enabling scalable virtual
organizations. International Journal of Supercomputer
Applications 15, 3 (2001).

[16] Garfinkel, T., Pfaff, B., Chow, J., Rosenblum,

M., and Boneh, D. Terra: A virtual machine-based
platform for trusted computing. In Proceedings of the
19th ACM symposium on Operating systems principles
SOSP 2003 (2003), pp. 193–206.



[17] Garfinkel, T., and Rosenblum, M. A virtual
machine introspection-based architecture for intrusion
detection. In Proceedings of the 2003 Network and
Distributed Systems Symposium (NDSS 2003) (2003).

[18] Gupta, A., and Dinda, P. A. Inferring the topology
and traffic load of parallel programs running in a
virtual machine environment. In Proceedings of the
10th Workshop on Job Scheduling Strategies for
Parallel Processing (JSPPS 2004 (June 2004).

[19] Haldar, V., Chandra, D., and Franz, M.

Semantic remote attestation—a virtual machine
directed approach to trusted computing. In
Proceedings of the 3rd USENIX Virtual Machine
Research And Technology Symposium (VM 2004)
(May 2004).

[20] Hand, S., Harris, T., Kotsovinos, E., and

Pratt, I. Controlling the xenoserver open platform.
In Proceedings of the Sixth IEEE Conference on Open
Architectures and Network Programming
(OPENARCH 2003), (April 2003).

[21] Larson, S. M., Snow, C. D., Shirts, M., and

Pande, V. S. Folding@home and genome@home:
Using distributed computing to tackle previously
intractable problems in computational biology. In
Computational Genomics, R. Grant, Ed. Horizon
Press, 2002.

[22] Louriero, S., Bussard, L., and Roudier, Y.

Extending tamper-proof hardware security to
untrusted execution environments. In Proceedings of
the 5th Smart Card Research and Advanced
Application Conference (November 2002), USENIX.

[23] National Institute of Standards and

Technology. Announcing the advanced encryption
standard. Tech. Rep. Federal Information Processing
Standards Publication 197, November 2001.

[24] Rivest, R. L., Shamir, A., and Adelman, L. M. A
method for obtaining digital signatures and public-key
cryptosystems. Tech. Rep. MIT/LCS/TM-82,
Massachusettes Institute of Technology, 1977.

[25] Sander, T., and Tschudin, C. Towards mobile
cryptography. In Proceedings of the IEEE Symposium
on Security and Privacy (1998).

[26] Sander, T., and Tschudin, C. F. Protecting mobile
agents against malicious hosts. Lecture Notes in
Computer Science 1419 (1998).

[27] Sarmenta, L. F. G. Volunteer Computing. PhD
thesis, Massachusetts Institute of Technology, June
2001.

[28] Sarmenta, L. F. G. Sabotage-tolerance mechanisms
for volunteer computer systems. Future Generation
Computer Systems 18, 4 (2002).

[29] Song, D., Wagner, D., and Perrig, A. Practical
techniques for searches on encrypted data. In
Proceedings of the IEEE Security and Privacy
Symposium (May 2000).

[30] Sullivan, W. T., Werthimer, D., Bowyer, S.,

Cobb, J., Gedye, D., and Anderson, D. A new
major seti project based on project serendip data and
100,000 personal computers. In Proceedings of the
Fifth International Conference on Bioastronomy
(1997), C. Cosmovici, S. Bowyer, and D. Werthimer,
Eds., no. 161 in IAU Colloquim, Editrice Compositori,
Bologna, Italy.

[31] Tuecke, S., Czajkowski, K., Foster, I., Frey, J.,

Graham, S., Kesselman, C., Maquire, T.,

Sandholm, T., Snelling, D., and Vanderbilt, P.

Open grid services infrastructure (ogsi) version 1.0.
Tech. rep., Global Grid Forum, June 2003.

[32] Waldspurger, C. A., Hogg, T., Huberman, B. A.,

Kephart, J. O., and Stornetta, W. S. Spawn: A
distributed computational economy. IEEE Trans. on
Software Engineering 18, 2 (February 1992), 103–117.

[33] Yee, B. S. A sanctuary for mobile agents. In Secure
Internet Programming (1999), pp. 261–273.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
    /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
    /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
    /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


