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Abstract

We are developing Virtuoso, a system for distributed
computing using virtual machines (VMs). Virtuoso must
be able to mix batch and interactive VMs on the same
physical hardware, while satisfying constraints on re-
sponsiveness and compute rates for each workload.
VSched is the component of Virtuoso that provides this
capability. VSched is an entirely user-level tool that in-
teracts with the stock Linux kernel running below any
type-II virtual machine monitor to schedule all VMs (in-
deed, any process) using a periodic real-time schedul-
ing model. This abstraction allows compute rate and
responsiveness constraints to be straightforwardly de-
scribed using a period and a slice within the period, and
it allows for fast and simple admission control. This pa-
per makes the case for periodic real-time scheduling for
VM-based computing environments, and then describes
and evaluates VSched. It also applies VSched to schedul-
ing parallel workloads, showing that it can help a BSP
application maintain a fixed stable performance despite
externally caused load imbalance.
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1 Introduction

We are developing Virtuoso, middleware for virtual
machine distributed computing that very closely emu-
lates the process of buying, configuring, and using an
Intel-based computer or collection of computers from a
web site, a process with which many users and certainly
all system administrators are familiar. Instead of a phys-
ical computer, the user receives a reference to the vir-
tual machine which he can then use to start, stop, reset,
and clone the machine. The system presents the illusion
that the virtual machine is right next to the user in terms
of console display, devices, and the network. Virtuoso
currently uses VMware GSX Server, a type-II virtual
machine [17], as its virtual machine monitor (VMM),
though other VMMs can in principle be substituted, and
our model could easily be employed in a type-I VMM.
Details about the Virtuoso implementation [41], its vir-
tual networking system [43], its application topology in-
ference system [19], its use of the Wren network infer-
ence system [46], its dynamic adaptation system [45, 44],
and its optical network reservation system [30] can be
found in the references, as can a detailed case for grid
computing on virtual machines [13], a more recent dis-
cussion of the role of VMs in this area [28], and an intro-
duction to the state of the art in virtualization [12].

Virtuoso is designed to support a wide range of work-
loads that its simple user-level abstraction makes possi-
ble. Three workload types drove our design process:

• Interactive workloads which occur when using a
remote VM to substitute for a desktop computer.
These workloads include desktop applications, web
applications and games.1

1It is debatable to what extent a remote VM could replace a desk-
top and what the permissible limits on the latency from the VM to the
client are, but there are certainly a wide range of interactive applica-
tions which can be successfully used remotely using modern display
techniques. For example, Lai and Neih demonstrated successful use of
thin clients for several desktop applications, including video, despite
> 1000 miles between client and server [29].
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• Batch workloads, such as scientific simulations or
analysis codes. These workloads are commonplace
in grid computing [14].

• Batch parallel workloads, such as scientific simula-
tions or analysis codes that can be scaled by adding
more VMs. These are also commonplace in grid
computing. Typically, it is desirable for such work-
loads to be gang scheduled [37, 26].

Today, both sequential and parallel batch jobs are often
scheduled using advance reservations [25, 42] such that
they will finish by some deadline. Resource providers in
Virtuoso price VM execution according to interactivity
and compute rate constraints; thus, its scheduling model
must be able to validate and enforce these constraints.

An important challenge in Virtuoso is how to sched-
ule a workload-diverse set of VMs on a single physical
machine so that interactivity does not suffer and batch
machines meet both their advance reservation deadlines
and gang scheduling constraints. It is that challenge that
VSched addresses. VSched provides a unified periodic
real-time scheduling model that can address the various
constraints of different kinds of VMs. VSched is an en-
tirely user-level Linux tool that is remotely controlled by
Virtuoso. Its main requirements are a 2.4 or 2.6 Linux
kernel and root privileges, in addition it can make use of
the KURT high resolution timer [22] to permit very fine-
grained schedules. It can work with any type-II VMM
that runs the VM as a Linux process, and it can also
schedule ordinary processes. VSched can be downloaded
from http://virtuoso.cs.northwestern.edu.

2 VSched

VSched schedules a collection of VMs on a host ac-
cording to the model of independent periodic real-time
tasks. Tasks can be introduced or removed from con-
trol at any point in time through a client/server interface.
Virtuoso uses this interface to enforce compute rate and
interactivity commitments a provider has made to a VM.

2.1 Abstraction

The periodic real-time model is a unifying abstrac-
tion that can provide for the needs of the various classes
of applications described above. In the periodic real-
time model, a task is run for slice seconds every period
seconds. Typically, the periods start at time zero. Us-
ing earliest deadline first (EDF) schedulability analy-
sis [33], the scheduler can determine whether some set
of (period , slice) constraints can be met. The scheduler
then simply uses dynamic priority preemptive scheduling
with the deadlines of the admitted tasks as priorities.

VSched offers soft real-time guarantees. Because the
Linux kernel does not have priority inheritance mecha-
nisms, nor known bounded interrupt service times, it is
impossible for a tool like VSched to provide hard real-
time guarantees to ordinary processes. Nonetheless, as
we show in our evaluation, for a wide range of periods
and slices, and under even fairly high utilization, VSched
almost always meets the deadlines of its tasks.

In typical soft and hard embedded real-time systems,
the (period , slice) constraint of a task is usually mea-
sured in microseconds to low milliseconds. VSched is
unusual in that it supports periods and slices ranging
into days. While fine, millisecond and sub-millisecond
ranges are needed for highly interactive VMs, much
coarser resolutions are appropriate for batch VMs.

It is important to realize that the ratio slice/period
defines the compute rate of the task.

Batch VMs Executing a VM under the constraint
(period , slice) for T seconds gives us at least slice ×
�T/period� seconds of CPU time within T seconds. In
this way, the periodic real-time model can be used to ex-
press a deadline for the entire execution of the batch VM.

Batch parallel VMs A parallel application may be run
in a collection of VMs, each of which is scheduled with
the same (period , slice) constraint. If each VM is given
the same schedule and starting point, then they can run
in lock step, avoiding the synchronization costs of typical
gang scheduling.2 If the constraint accurately reflects the
application’s compute/communicate balance, then there
should be minimal undesired performance impact as we
control the execution rate. As the schedule is a reserva-
tion, the application is impervious to external load.

Interactive VMs Based on an in-depth study of users
operating interactive applications such as word proces-
sors, presentation graphics, web browsers, and first-
person shooter games, we have reached a number of con-
clusions about how to keep users of such applications
happy [20]. The points salient to this paper are that the
CPU rates and jitter needed to keep the user happy is
highly dependent on the application and on the user. We
believe we need to incorporate direct user feedback in
scheduling interactive applications running in VMs.

In earlier work [31], we explored using a sin-
gle “irritation button” feedback mechanism to control
VM priority. This approach proved to be too coarse-
grained. The two-dimensional control possible with the

2Note, however, that this does introduce the need for synchronized
clocks, with the bounds on synchronization decreasing with the granu-
larity of the application.
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(period , slice) mechanism is much finer-grained. An im-
portant design criterium for VSched is that a VM’s con-
straints can be changed very quickly (in milliseconds)
so that an interactive user can improve his VM’s perfor-
mance immediately or have the system migrate it to an-
other physical machine if his desired (period , slice) is
impossible on the original machine. We discuss this fur-
ther in Section 7.

2.2 Type-II versus type-I VMMs

VSched is a user-level program that runs on Linux and
schedules other Linux processes. We use it here to sched-
ule the VMs created by VMware GSX Server. GSX is
a type-II virtual machine monitor, meaning that it does
not run directly on the hardware, but rather on top of a
host operating system, in this case Linux. A GSX VM,
including all of the processes of the guest operating sys-
tem running inside, appears as a process in Linux, which
is then scheduled by VSched.

While type-II VMMs are by far the most common
on today’s hardware and VSched’s design lets it work
with processes that are not VMs, it is important to point
out that periodic real-time scheduling of VMs could also
be straightforwardly applied in type-I VMMs. A type-
I VMM runs directly on the underlying hardware with
no intervening host OS. In this case, the VMM sched-
ules the VMs it has created just as an OS would schedule
processes. Just as many OSes support the periodic real-
time model, so could type-I VMMs. Our argument for
scheduling VMs using the periodic real-time model still
applies.

2.3 Related work

Existing approaches to scheduling VMs running un-
der a type-II VMM on Linux (and other Unixes) are
insufficient to meet the needs of the workloads listed
above. By default, these VMs are scheduled as ordi-
nary dynamic-priority processes with no timing or com-
pute rate constraints at all. VMware ESX server [47]
and virtual server systems such as Ensim [11] improve
this situation by providing compute rate constraints us-
ing weighted fair queuing [4] and lottery scheduling [48].
However, these are insufficient for our purposes because
they either provide no timing constraints or do not allow
for the timing constraints to be smoothly varied. Funda-
mentally, they are rate-based. For example, an interac-
tive VM in which a word processing application is be-
ing used may only need 5% of the CPU, but it will need
to be run at least every 50 ms or so. Similarly, a VM
that is running a parallel application may need 50% of
the CPU, and be scheduled together with its companion

VMs. The closest VM-specific scheduling approach to
ours is the VServer [32] slice scheduling in the Planet-
Lab testbed [39]. However, these slices are created a pri-
ori and fixed. VSched provides dynamic scheduling.

Periodic real-time scheduling systems for general-
purpose operating systems have been developed before.
Most relevant to our work is Polze’s scheduler [38],
which created soft periodic schedules for multimedia ap-
plications by manipulating priorities under Windows NT.
DSRT [6], SMART [36], and Rialto [27] had similar ob-
jectives. In contrast, VSched is a Linux tool, provides
remote control for systems like Virtuoso, and focuses
on scheduling VMs. Linux SRT, defunct since the 2.2
kernel, was a set of kernel extensions to support soft
real-time scheduling for multimedia applications under
Linux [24]. The RBED system [40] also provides real-
time scheduling for general Linux processes through ker-
nel modifications. The Xen [9] virtual machine monitor
uses BVT [10] scheduling with a non-trivial modification
of Linux kernel and requires that the hosted operating
system be ported to Xen. In contrast to these systems,
VSched can operate entirely at user-level.

There have been several hard real-time extensions
to Linux. The best known of these are Real-time
Linux [49], RTAI [8], and KURT [22]. We examined
these tools (and Linux SRT as well) before deciding to
develop VSched. For our purposes, the hard real-time ex-
tensions are inappropriate because real-time tasks must
be written specifically for them. In the case of Real-time
Linux, the tasks are even required to be kernel modules.
VSched can optionally use KURT’s UTIME high reso-
lution timers to achieve very fine-grained scheduling of
VMs.

3 System design

VSched uses the schedulability test of the earliest-
deadline-first (EDF) algorithm [33, 34] to do ad-
mission control and EDF scheduling to meet dead-
lines. It is a user-level program that uses fixed priori-
ties within Linux’s SCHED FIFO scheduling class and
SIGSTOP/SIGCONT to control other processes, leaving
aside some percentage of CPU time for processes that it
does not control. By default, VSched is configured to be
work-conserving for the real-time processes it manages,
allowing them to also share these resources and allowing
non-real-time processes to consume time when the real-
time processes are blocked. The resolution at which it
can schedule depends on timer resolution in the system,
and thus its resolution depends on the Linux kernel ver-
sion and the existence of add-on high-resolution timers.
VSched consists of a parent and a child process that com-
municate via a shared memory segment and a pipe. The
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following describes the design of VSched in detail.

3.1 Algorithms

A well-known dynamic-priority algorithm is EDF
(Earliest Deadline First). It is a preemptive policy in
which tasks are prioritized in reverse order of the im-
pending deadlines. The task with the highest priority is
the one that is run. We assume that the deadlines of our
tasks occur at the ends of their periods, although this is
not required by EDF.

Given a system of n independent periodic tasks, there
is a fast algorithm to determine if the tasks, if scheduled
using EDF, will all meet their deadlines:

U(n) =
n∑

k=1

slicek

periodk

≤ 1 (1)

Here, U(n) is the total utilization of the task set being
tested. Equation 1 is both a necessary and sufficient
condition for any system of n independent, preemptable
tasks that have relative deadlines equal to their respective
periods to be schedulable by EDF [34].

3.2 Mechanisms

SCHED FIFO Three scheduling policies are sup-
ported in the current Linux kernel: SCHED FIFO,
SCHED RR and SCHED OTHER. SCHED OTHER is
the default universal time-sharing scheduler policy used
by most processes. It is a preemptive, dynamic-priority
policy. SCHED FIFO and SCHED RR are intended for
special time-critical applications that need more precise
control over the way in which runnable processes are se-
lected for execution. Within each policy, different prior-
ities can be assigned, with SCHED FIFO priorities be-
ing strictly higher than SCHED RR priorities which are
in turn strictly higher than SCHED OTHER priorities.
SCHED FIFO priority 99 is the highest priority in the
system and it is the priority at which the scheduling core
of VSched runs. The server front-end of VSched runs at
priority 98. No other processes at these priority levels
are allowed.

SCHED FIFO is a simple preemptive scheduling pol-
icy without time slicing. For each priority level in
SCHED FIFO, the kernel maintains a FIFO queue of
processes. The first runnable process in the highest pri-
ority queue with any runnable processes runs until it
blocks, at which point it is placed at the back of its
queue. When VSched schedules a VM to run, it sets it to
SCHED FIFO and assigns it a priority of 97, just below
that the VSched server front-end. No other processes at
this priority level are allowed.

The following rules are applied by the kernel: A
SCHED FIFO process that has been preempted by an-
other process of higher priority will stay at the head
of the list for its priority and will resume execution
as soon as all processes of higher priority are blocked
again. When a SCHED FIFO process becomes runnable,
it will be inserted at the end of the list for its pri-
ority. A system call to sched_setscheduler or
sched_setparam will put the SCHED FIFO process
at the end of the list if it is runnable. No other events will
move a process scheduled under the SCHED FIFO pol-
icy in the queue of runnable processes with equal static
priority. A SCHED FIFO process runs until either it is
blocked by an I/O request, it is preempted by a higher
priority process, or it calls sched_yield. The upshot
is that the process that VSched has selected to run is the
one with the earliest deadline. It will run whenever it is
ready until VSched becomes runnable.

Timers After configuring a process to run at
SCHED FIFO priority 97, the VSched core waits
(blocked) for one of two events using the select
system call. It continues when it is time to change the
currently running process (or to run no process) or when
the set of tasks has been changed via the front-end.

The resolution that VSched can achieve is critically
dependent on the available timer. Under the standard
2.4.x Linux kernel, the timer offers 10 ms resolution. For
many applications this is sufficient. However, especially
interactive applications, such as games or low-latency
audio playback require finer resolution. When running
on a 2.6.x Linux kernel, VSched achieves 1 ms resolution
because the timer interrupt rate has been raised to 1000
Hz. The UTIME component of KURT-Linux [22] uses
the motherboard timers to deliver asynchronous timer in-
terrupts with resolution in the tens of µs. In VSched, we
call select with a non-null timeout as a portable way
to sleep with whatever precision is offered in the under-
lying kernel. Since UTIME extends select’s precision
when it’s installed, VSched can offer sub-millisecond
resolution in these environments. Note, however, that
the overhead of VSched is considerably higher than that
of UTIME, so the resolution is in the 100s of µs.

SIGSTOP/SIGCONT By using EDF scheduling to
determine which process to raise to highest priority, we
can assure that all admitted processes meet their dead-
lines. However, it is possible for a process to consume
more than its slice of CPU time. By default, when a pro-
cess’s slice is over, it is demoted to SCHED OTHER.
VSched can optionally limit a VM to exactly the slice
that it requested by using the SIGSTOP and SIGCONT
signals to suspend and resume the VM, similar to how

4



TCP

Scheduling
Core

SCHED_FIFO 
Queues

Shared 
Memory

PIPE
Server 
module

Admission
Control

API 
Calls

Linux kernel

SSL

VSCHED Client

VIRTUOSO Front-end

VSCHED 
Server

98

97

99

SCHED_FIFO Priority

Figure 1. Structure of VSched.

control was asserted in GLUnix [18]. Although this adds
overhead, we envision this as critical in a commercial en-
vironment.

3.3 Structure

VSched consists of a server and a client, as shown in
Figure 1. The VSched server is a daemon running on
Linux that spawns the scheduling core, which executes
the scheduling scheme described above. The VSched
client communicates with the server over a TCP con-
nection that is encrypted using SSL. Authentication is
accomplished by a password exchange. The server com-
municates with the scheduling core through two mecha-
nisms. First, they share a memory segment which con-
tains an array that describes the current tasks to be sched-
uled as well as their constraints. Access to the array is
guarded via a semaphore. The second mechanism is a
pipe from server to core. The server writes on the pipe to
notify the core that the schedule has been changed.

Client interface Using the VSched client, a user can
connect to VSched server and request that any process
be executed according to a period and slice. Virtuoso
keeps track of the pids used by its VMs. For example,
the specification (3333, 1000 ms, 200 ms) would mean
that process 3333 should be run for 200 ms every 1000
ms. In response to such a request, the VSched server
determines whether the request is feasible. If it is, it will
add the process to the array and inform the scheduling
core. In either case, it replies to the client.

VSched allows a remote client to find processes,
pause or resume them, specify or modify their real-time
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Figure 2. A detailed VSched schedule for
three VMs.

schedules, and return them to ordinary scheduling. Any
process, not just VMs, can be controlled in this way.

Admission control VSched’s admission control algo-
rithm is based on Equation 1, the admissibility test of
the EDF algorithm. As we mentioned above, it is both
a necessary and sufficient condition. Instead of trying to
maximize the total utilization, we allow the system ad-
ministrator to reserve a certain percentage of CPU time
for SCHED OTHER processes. The percentage can be
set by the system administrator when starting VSched.

Scheduling core The scheduling core is a modified
EDF scheduler that dispatches processes in EDF order
but interrupts them when they have exhausted their allo-
cated CPU for the current period. If configured by the
system administrator, VSched will stop the processes at
this point, resuming them when their next period begins.

Since a task can miss its deadline only at a period
boundary, the scheduling core makes scheduling deci-
sions only at period boundaries, i.e., at the points when
a task exhausts its slice for the current period, or when
the server indicates that the task set and its constraints
have changed. In this way, unlike a kernel-level sched-
uler [1, 2, 3, 5, 21, 35], VSched is typically invoked only
at the rate of the task with the smallest period.

When the scheduling core receives scheduling re-
quests from the server module, it will interrupt the cur-
rent task and make an immediate scheduling decision
based on the new task set. The scheduling request can
be a request for scheduling a newly arrived task or for
changing a task that has been previously admitted.

Figure 2 illustrates the scheduling of three virtual ma-
chines with different arrival times.
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Machine 1: Pentium 4, 2.00GHz, 512MB Mem, Linux version 2.4.20-31.9 (Red Hat Linux 9.0)
Machine 2: Dual CPUs (Pentium III Coppermine, 1.0 GHZ), 1G Mem, non-SMP Linux kernel 2.4.18 patched with KURT 2.4.18-2
Machine 3: Pentium 4, 2.00GHz, 512MB Mem, Linux version 2.6.8.1 (Red Hat Linux 9.0)

Figure 3. Testbed Machines

Kernel version Machine Utilization Period Slice Deadlines per
(from Figure 3) Range Range Range combination

Linux kernel 2.4.20-31.9 1 10% - 99% 1016 ms - 16 ms 105.8 ms - 1.6 ms 1000
(increasing by 10%) (decreasing by 40 ms)

KURT 2.4.18-2 2 1% - 99% 10.1 ms - 1.1 ms 9.999 ms - 0.011 ms 2000
(increasing by 1%) (decreasing by 1 ms)

Linux kernel 2.6.8.1 3 1% - 99% 101 ms - 1 ms 99.99 ms - 0.01 ms 2000
(increasing by 1%) (decreasing by 10 ms)

Figure 4. Evaluation scenarios.

4 Evaluation

Our evaluation focuses on the resolution and utiliza-
tion limits of VSched running on several different plat-
forms. We answer the following questions: what com-
binations of period and slice lead to low deadline miss
rates and what happens when the limits are exceeded?

We ran our evaluation in three different environments,
as shown in Figure 3. The key differences between these
environments are the processor speed (1 GHz P3 versus
2 GHz P4) and the available timers (2.4 kernel, 2.4 with
KURT, and 2.6 kernel). For space reasons, we present re-
sults for machine 1 only, a stock Red Hat installation that
is the most conservative of the three. Additional results
are available at virtuoso.cs.northwestern.edu.

We also consider the effects of VSched on time-
sensitive local I/O devices in this section. The next sec-
tion looks at user-perceived quality of audio and video
I/O, while Section 6 addresses network I/O in the context
of parallel applications. In all cases except for local I/O,
we are running the application in the VM and scheduling
the VM.

4.1 Methodology

Our primary metric is the miss rate, the number of
times we miss the deadlines of a task divided by the total
number of deadlines. For tasks that miss their deadlines,
we also collect the miss time, the time by which the dead-
line was overrun. We want to understand how the miss
rate varies with period and slice (or, equivalently, period
and utilization), the number of VMs, and by how much
we typically miss a deadline when this happens.

We evaluate first using randomly generated testcases,
a testcase being a random number of VMs, each with a
different (period , slice) constraint. Next, we do a care-
ful deterministic sweep over period and slice for a single

VM. Figure 4 shows the range of parameters used.

4.2 Randomized study

Figure 5 shows the miss rates as a function of the total
utilization of the VMs for one through four VMs. Each
point corresponds to a single randomly generated test-
case, while the line represents the average miss rate over
all the testcases. The miss rates are low, independent of
total utilization, and largely independent of the number
of VMs after two VMs. Going from one to two VMs
introduces the need for more frequent context switches.

Figure 6 shows the distribution of the ratio of miss
time to slice size, with the line showing the maximum.
All misses that do occur miss by less than 9%.

4.3 Deterministic study

In this study, we scheduled a single VM, sweeping
its period and slice over the values described in Figure 4.
Our goal was to determine the maximum possible utiliza-
tion and resolution, and thus the safe region of operation
for VSched on the different platforms.

Figure 7 shows the miss rate as a function of the pe-
riod and slice for Machine 1. The top graph is a 3D rep-
resentation of this function, while the bottom graph is a
contour map of the function. This is evidence that uti-
lizations to within a few percent of 100% are possible
with nearly 0% miss rate.

Deadline misses tend to occur in one of two situations:

• Utilization misses: The utilization needed is too
high (but less than 1).

• Resolution misses: The period or slice is too small
for the available timer and VSched overhead to sup-
port.
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Figure 5. Miss rate as a function of utiliza-
tion, Random study on Machine 1 (2 GHz
P4, 2.4 kernel).

Figure 8 illustrates utilization misses on Machine 1.
Here, we are requesting a period of 16 ms (feasible) and
a slice of 15.8 ms (feasible). However, this utilization of
98.75% is too high for to be able to schedule it. VSched
would require slightly more than 1.25% of the CPU. The
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Figure 6. Distribution of missed percentage
of slice; Random study on Machine 1 (2
GHz P4, 2.4 kernel).

figure shows a histogram of the miss times. Notice that
the vast majority of misses miss by less than 405 µs, less
than 3% of the period.

Figure 9 summarizes the utilization and resolution
limits of VSched running on our different configurations.
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Configuration Maximum Utilization Minimum Resolution
Machine 1 0.90 10 ms
Machine 2 0.75 0.2 ms
Machine 3 0.98 1 ms

Figure 9. Summary of performance limits
on three platforms.
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Figure 10. Performance of time-sensitive
I/O (ripping an Audio CD) (2 GHz P4, 512MB
RAM, 2.6 kernel, Mandrake Linux).

Beyond these limits, miss rates are close to 100%, while
within these limits, miss rates are close to 0%.

4.4 I/O

As VSched schedules only the CPU and, unlike
SCHED OTHER, provides no priority boost for a pro-
cess that has just completed I/O, a natural question is
how much I/O, particularly time-sensitive I/O, suffers.
Figure 10 illustrates the performance of ripping a track
from an audio CD using cdparanoia, where cdparanoia
is scheduled according to different periods and utiliza-
tions. Note that here we are scheduling the cdparanoia
application directly (no VM is involved). Reading from
CD is extremely time sensitive as a buffer overrun re-
sults in a very expensive seek. The time to rip the track
without any VSched scheduling is 37 seconds with 5%
CPU utilization, which is nearly identical to not using a
VM at all. It is clearly possible for VSched to sched-
ule cdparanoia so that it achieves similar performance to
SCHED OTHER at a similar utilization.

5 Mixing batch and interactive VMs

To see the effect of VSched on an interactive VM used
by real users, we ran a small study. The users in our study
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(period, slice)(ms) Quake(with sound) MP3 playback MPEG(with sound) playback Web Browsing
5, 1 good good tiny audio jitter good
6, 1 good good tiny audio jitter good
7, 1 tiny jitter good tiny audio jitter good
8, 1 small jitter tiny jitter tiny jitter jitter
9, 1 jitter noisy tiny jitter jitter
10, 1 jitter noisy jitter jitter
15, 1 jitter noisy jitter jitter
20, 1 jitter noisy jitter jitter
30, 1 jitter noisy jitter jitter
20, 10 small jitter small jitter jitter small jitter
30, 10 jitter noisy jitter jitter
50, 10 jitter noisy jitter jitter
100, 80 jitter noisy jitter good
200, 100 jitter noisy jitter jitter
300, 100 jitter noisy jitter jitter

Figure 11. Summary of qualitative observations from running various interactive applications
in an Windows VM with varying period and slice. The machine is also running a batch VM
simultaneously with a (10 min, 1 min) constraint.

consisted of four graduate students from the Northwest-
ern Computer Science Department. Each user ran an in-
teractive VM with fine-grained interactive programs to-
gether with a batch VM and reported his observations.
The test machine had the following configuration:

• Pentium 4, 2.20GHz, 512MB Mem, Linux version
2.6.8.1-12mdk (Mandrake Linux 10.1)

• VMware GSX Server 3.1

• VSched server running as a daemon

• Interactive VM running Windows XP

• Batch VM running Red Hat Linux 7.3. A process
was started in the batch VM that consumed CPU cy-
cles as fast as possible and periodically sent a UDP
packet to an external machine to report on progress.

Each user tried the following activities in his VM:

• Listening to MP3 music using MS Media Player

• Watching an MPEG video clip using MS Media
Player

• Playing QUAKE II [23] (3D first person shooter)

• Browsing the web using Internet Explorer, includ-
ing using multiple windows, Flash Player content,
saving pages, and fine-grained view scrolling.

We set the batch VM to run 1 minute every 10 minutes
(10% utilization). The user was given control of the pe-
riod and slice of his interactive VM. For each activity,

the user tried different combinations of period and slice
to determine qualitatively which were the minimum ac-
ceptable combinations. Figure 11 summarizes our obser-
vations. For each activity, we present the worst case, i.e.,
the observations of the most sensitive user.

These qualitative results are very promising. They
suggest that by using VSched we can run a mix of in-
teractive and batch VMs together on the same machine
without having them interfere. The results also indicate
that there is considerable headroom for the interactive
VMs. For example, we could multiplex nearly 8 Win-
dows VMs with users comfortably playing QUAKE II in
each of them on one low-end P4 computer. Given the
fast reaction time of VSched to a schedule change (typ-
ically within a few milliseconds), we have high hopes
that the end-users of interactive machines will be able
to dynamically adjust their VM’s constraints for chang-
ing needs. The same holds true for the users of batch
VMs. Indeed, the VSched abstraction provides for a
continuum from fine-grained interactivity to very coarse-
grained batch operation, all on the same hardware.

6 Scheduling batch parallel applications

Can we use the periodic real-time model of VSched
to (a) linearly control the execution rate of a parallel ap-
plication running on VMs mapped to different hosts; and
(b) protect such an application from external load? Re-
call that parallel applications are typically run on either a
space-shared machine or using gang-scheduling in order
to avoid performance-destroying interactions.

To provide initial answers to these questions, we run a

9



Figure 12. Compute rate as a function of uti-
lization for different (period , slice) choices.
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Figure 13. Compute rate as a function of
contention.

synthetic Bulk Synchronous Parallel (BSP [16]) bench-
mark, patterns, written for PVM [15]. Patterns is con-
figured to run all-to-all communication pattern on four
nodes of a cluster (2.0 GHz Xeon, 1.5 GB RAM, Gigabit
Ethernet interconnect). The compute/communicate ratio
is set to 0.5, so this benchmark is quite communication
intensive (significant network I/O). We schedule the pro-
gram on each of the nodes using VSched. We use the
execution rate of the program in MFLOP/s as our met-
ric. Note that our choice of application is conservative:
it is far easier to control a more loosely coupled parallel
application with VSched.

6.1 Controlling execution rate

The goal of this experiment was to determine if, for
a desired utilization, there is a (period , slice) constraint
that achieves the utilization while resulting in only a cor-
responding decrease in actual execution rate. We used
periods of 20, 30, ..., 100 ms and slices of 0.1, 0.2, ...,
0.9 times the period.

Figure 12 shows the relationship between MFLOP/s
and utilization (slice/period ). As is marked on the
graph, there are choices of (period , slice) that allow us
to change utilization while keeping the actual program
execution rate rigidly tied to it. As we decrease utiliza-
tion, the duration of a compute phases increases, but the
communication phase stays largely the same.

6.2 Ignoring external load

Any coupled parallel program can suffer drastically
from external load on any node; the program runs at the
speed of the slowest node. The periodic real-time model
of VSched can shield the program from such external
load, preventing the slowdown.

Here we execute patterns on four nodes with a
(period , slice) that results in it running at about 50% of
its maximum possible rate. On one of the nodes, we ap-
ply external load, a program that contends for the CPU
using load trace playback techniques [7]. Contention is
defined as the average number of contention processes
that are runnable. With a contention level of 1.5, if there
is one other runnable process, one not scheduled with
VSched, it runs at 1/(1.5 + 1) = 40 % of the maximum
possible rate on the system.

Figure 13 illustrates the results. With VSched, pat-
terns executes at about 25 MFLOP/s regardless of the
amount of contention introduced. On the other hand,
without VSched, the node with the contending program
slows as more contention is introduced, slowing down
all the other nodes as well. Beyond a contention of 1.0,
patterns slows to a crawl without VSched, and we do not
plot those points. In general, schedulers that can isolate
workloads are preferable for parallel applications.

We conclude that VSched can help a BSP applica-
tion maintain a fixed stable performance under a speci-
fied compute rate constraint despite external load.

7 Choosing the right (period , slice)

We are working on how to choose (period , slice) con-
straints for interactive VMs in which users may have
varying demands. We have developed a graphical tool
for such VMs that indicates to the user what his current
efficiency (cycles used as opposed to cycles allocated)
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Figure 14. Current control interface.

and cost is, and then allows him to directly manipulate
(period , slice). VSched can change the schedule of a
VM in milliseconds, allowing for very smooth control.

Finding the right user interface to input the period and
slice is a challenge. The holy grail is an interface that is
invisible or nonintrusive until the user is unhappy with
performance, and then can be nearly instantly manipu-
lated to change the schedule. Currently, we have both an
on-screen interface (sliders) and a joystick interface with
optional force feedback when impossible constraints are
requested (Figure 14). Non-centering joysticks currently
appear to be the best option so far. We are also looking
at trackballs, throttle controllers, and knob controllers.

For batch VMs with I/O and batch parallel VMs we
envision the user manipulating the schedule to achieve
a needed application-specific execution rate or effi-
ciency. Alternatively, for an application that is run of-
ten, a user can readily map out the relationship between
(period , slice) and execution rate, as in Section 6.1, and
then make that relationship available to others.

8 Conclusions and future work

We have motivated the use of the periodic real-time
model for virtual-machine-based distributed computing;
the model allows us to straightforwardly mix batch and
interactive VMs and allows users to succinctly describe
their performance demands. We have designed and im-
plemented a user-level scheduler for Linux that provides
this model. We evaluated its performance on several dif-
ferent platforms and found that we can achieve very low
deadline miss rates up to quite high utilizations and quite
fine resolutions. Our scheduler has allowed us to mix
long-running batch computations with fine-grained in-
teractive applications such as first-person-shooter games
with no reduction in usability of the interactive applica-
tions. It also lets us schedule parallel applications, effec-
tively controlling their utilization without adverse perfor-
mance effects, and allowing us to shield them from ex-

ternal load. Our current work focuses on how to choose
schedules straightforwardly for all kinds of VMs, how to
incorporate direct human input into the scheduling pro-
cess, and how to coordinate schedules across multiple
machines for parallel applications.

VSched is publicly released and can be downloaded
from http://virtuoso.cs.northwestern.edu.
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